Spaces:
Sleeping
Sleeping
File size: 10,342 Bytes
c85385e 142ba07 56506e9 d4a2e62 c85385e 56506e9 bc55efe 56506e9 68cd41b bc55efe 68cd41b 56506e9 ca36ef4 c85385e ff2c5a2 ca36ef4 56506e9 ca36ef4 56506e9 ca36ef4 56506e9 ca36ef4 56506e9 142ba07 56506e9 62c1c78 56506e9 62c1c78 c85385e 56506e9 ff2c5a2 c85385e 56506e9 c85385e 56506e9 ff2c5a2 c85385e bc55efe 56506e9 bc55efe 68cd41b bc55efe 68cd41b bc55efe 68cd41b bc55efe 68cd41b bc55efe 56506e9 bc55efe 142ba07 56506e9 bc55efe 68cd41b bc55efe 68cd41b bc55efe 56506e9 bc55efe 56506e9 68cd41b 56506e9 ca36ef4 56506e9 ca36ef4 bc55efe 56506e9 68cd41b ca36ef4 56506e9 68cd41b 56506e9 68cd41b 56506e9 68cd41b 56506e9 62c1c78 bc55efe 68cd41b bc55efe 68cd41b bc55efe 68cd41b 62c1c78 56506e9 62c1c78 68cd41b 56506e9 62c1c78 56506e9 68cd41b 62c1c78 142ba07 56506e9 abc080f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
from openai import OpenAI
import gradio as gr
import json
from bot_actions import functions_dictionary, save_record
import os
CSS ="""
.contain { display: flex; flex-direction: column; }
.svelte-vt1mxs div:first-child { flex-grow: 1; overflow: auto;}
#chatbot { flex-grow: 1; overflow: auto;}
footer {display: none !important;}
.app.svelte-182fdeq.svelte-182fdeq {
max-width: 100vw !important;
}
#main_container {
height: 95vh;
}
#markup_container {
height: 100%;
overflow:auto;
}
"""
openAIToken = os.environ['openAIToken']
assistantId = os.environ['assistantId']
initial_message = os.environ['initialMessage']
client = OpenAI(api_key=openAIToken)
def handle_requires_action(data):
actions_results = []
for tool in data.required_action.submit_tool_outputs.tool_calls:
function_name = tool.function.name
function_args = json.loads(tool.function.arguments)
print(function_name)
print(function_args)
try:
result = functions_dictionary[tool.function.name](**function_args)
print("Function result:", result)
actions_results.append({"tool_output" : {"tool_call_id": tool.id, "output": result["message"]}})
except Exception as e:
print(e)
# Submit all tool_outputs at the same time
return actions_results
def create_thread_openai(sessionStorage):
streaming_thread = client.beta.threads.create()
sessionStorage["threadId"] = streaming_thread.id
return sessionStorage
def add_message_to_openai(text, threadId):
print("User message: ", text)
return client.beta.threads.messages.create(
thread_id=threadId,
role="user",
content=text
)
def transform_suggestions_into_list(string_of_suggestions):
local_message = None
parts = string_of_suggestions.split('#s#')
list_of_suggestions = json.loads(parts[0])
list_of_suggestions = [ x for x in list_of_suggestions if x]
if len(parts) > 1:
local_message = parts[1]
return list_of_suggestions, local_message
def create_suggestions_list(suggestions):
update_show = [gr.update(visible=True, value=w) for w in suggestions]
update_hide = [gr.update(visible=False, value="") for _ in range(6-len(suggestions))]
return update_show + update_hide
def process_text_chunk(text, storage):
print(text, end="", flush=True)
local_message = None
if "[" in text:
storage["is_loading_suggestions"] = True
if "#" in text and storage["is_loading_suggestions"] != True:
storage["is_loading_markup"] = True
if "<" in text:
storage["is_loading_suggestions"] = False
storage["is_loading_markup"] = False
storage["is_loading_svg"] = True
if storage["is_loading_suggestions"] == True or storage["is_loading_markup"] == True or storage["is_loading_svg"] == True:
accumulative_string = storage["accumulative_string"] + text
if storage["is_loading_suggestions"] == True:
if "#s#" in accumulative_string:
storage["is_loading_suggestions"] = False
list_of_suggestions, local_message = transform_suggestions_into_list(accumulative_string)
storage["list_of_suggestions"] = list_of_suggestions
accumulative_string = ""
elif "]" in accumulative_string and "]#" not in accumulative_string and not accumulative_string.endswith("]"):
storage["is_loading_suggestions"] = False
local_message = accumulative_string
accumulative_string = ""
elif storage["is_loading_markup"]:
if "#p#" in accumulative_string:
parts = accumulative_string.split("#p#")
if len(parts) > 2:
accumulative_string = parts[0] + parts[2]
storage["markup_string"] = parts[1]
storage["is_loading_markup"] = False
else:
local_message = parts[0]
accumulative_string = "#p#" + parts[1]
storage["markup_string"] = parts[1]
elif "#" in accumulative_string and "#p" not in accumulative_string and not accumulative_string.endswith("#"):
storage["is_loading_markup"] = False
local_message = accumulative_string
accumulative_string = ""
else:
if "<" in accumulative_string and "<s" not in accumulative_string and not accumulative_string.endswith("<"):
storage["is_loading_svg"] = False
local_message = accumulative_string
accumulative_string = ""
elif "<svg" in accumulative_string:
parts = accumulative_string.split("<svg")
if "#p#" in parts[0]:
info_parts = parts[0].split('#p#')
local_message = info_parts[0]
else:
local_message = parts[0]
if "</svg>" in parts[1]:
svg_ending = ("<svg" + parts[1]).split('</svg>')
storage["svg"] = svg_ending[0] + '</svg>'
accumulative_string = svg_ending[1]
storage["is_loading_svg"] = False
else:
accumulative_string = "<svg" + parts[1]
storage["svg"] = accumulative_string
storage["accumulative_string"] = accumulative_string
else:
local_message = text
return local_message, storage
def handle_events(threadId, chat_history, storage):
storage.update({
"list_of_suggestions" : [],
"is_loading_suggestions" : False,
"is_loading_markup" : False,
"is_loading_svg": False,
"accumulative_string" : "",
"markup_string": "",
"svg": ""
})
try:
with client.beta.threads.runs.stream(
thread_id=threadId,
assistant_id=assistantId
) as stream:
for event in stream:
if event.event == "thread.message.delta" and event.data.delta.content:
text = event.data.delta.content[0].text.value
local_message, storage = process_text_chunk(text, storage)
if local_message is not None:
chat_history[-1][1] += local_message
yield [ chat_history, storage, storage["markup_string"], storage["svg"]]
if event.event == 'thread.run.requires_action':
result = handle_requires_action(event.data)
tool_outputs = [x["tool_output"] for x in result]
with client.beta.threads.runs.submit_tool_outputs_stream(
thread_id=stream.current_run.thread_id,
run_id=event.data.id,
tool_outputs=tool_outputs,
) as action_stream:
for text in action_stream.text_deltas:
local_message, storage = process_text_chunk(text, storage)
if local_message is not None:
chat_history[-1][1] += local_message
yield [chat_history, storage, storage["markup_string"], storage["svg"]]
action_stream.close()
stream.until_done()
print("")
return [chat_history, storage, storage["markup_string"], storage["svg"]]
except Exception as e:
print(e)
chat_history[-1][1] = "Error occured during processing your message. Please try again"
yield [chat_history, storage, storage["markup_string"], storage["svg"]]
def initiate_chatting(chat_history, storage):
threadId = storage["threadId"]
chat_history = [[None, ""]]
add_message_to_openai(initial_message, threadId)
for response in handle_events(threadId, chat_history, storage):
yield response
def respond_on_user_msg(chat_history, storage):
message = chat_history[-1][0]
threadId = storage["threadId"]
print("Responding for threadId: ", threadId)
chat_history[-1][1] = ""
add_message_to_openai(message, threadId)
for response in handle_events(threadId, chat_history, storage):
yield response
def create_application():
with gr.Blocks(css=CSS, fill_height=True) as demo:
storage = gr.State({"list_of_suggestions": [], "is_loading_suggestions": False, "is_loading_markup": False, "accumulative_string": "", "markup_string": ""})
btn_list = []
with gr.Row(elem_id="main_container"):
with gr.Column(scale=4):
chatbot = gr.Chatbot(label="Facility managment bot", line_breaks=False, height=300, show_label=False, show_share_button=False, elem_id="chatbot")
with gr.Row():
for i in range(6):
btn = gr.Button(visible=False, size="sm")
btn_list.append(btn)
msg = gr.Textbox(label="Answer", interactive=False)
with gr.Column(scale=1, elem_id="markup_container"):
markdown = gr.Markdown(label="Bullet-list", value="# Facility information")
with gr.Row(variant="compact"):
svg_container = gr.HTML(label="SVG Container", value="""""")
def user(user_message, history):
return "", history + [[user_message, None]]
def update_suggestions(storage):
list_of_suggestions = storage['list_of_suggestions'] or []
btn_list = create_suggestions_list(list_of_suggestions)
return btn_list
def hide_suggestions():
return [gr.update(visible=False, value="") for _ in range(6)]
def disable_msg():
message_box = gr.Textbox(value=None, interactive=False)
return message_box
def enable_msg():
message_box = gr.Textbox(value=None, interactive=True)
return message_box
add_user_message_flow = [user, [msg,chatbot], [msg,chatbot]]
chat_response_flow = [respond_on_user_msg, [chatbot, storage], [chatbot, storage, markdown, svg_container]]
update_suggestions_flow = [update_suggestions, storage, btn_list]
hide_suggestions_flow = [hide_suggestions, None, btn_list]
disable_msg_flow = [disable_msg, None, msg]
enable_msg_flow = [enable_msg, None, msg]
msg.submit(*add_user_message_flow
).then(*hide_suggestions_flow
).then(*disable_msg_flow
).then(*chat_response_flow
).then(*update_suggestions_flow
).then(*enable_msg_flow)
for sug_btn in btn_list:
add_suggestion_message_flow = [user, [sug_btn, chatbot], [msg, chatbot]]
sug_btn.click(*add_suggestion_message_flow
).then(*hide_suggestions_flow
).then(*disable_msg_flow
).then(*chat_response_flow
).then(*update_suggestions_flow
).then(*enable_msg_flow)
demo.load(create_thread_openai, inputs=storage, outputs=storage
).then(initiate_chatting, inputs=[chatbot, storage], outputs=[chatbot, storage, markdown, svg_container]
).then(*update_suggestions_flow
).then(*enable_msg_flow)
return demo
if __name__ == "__main__":
demo = create_application()
demo.launch() |