Spaces:
Runtime error
Runtime error
File size: 7,654 Bytes
c85385e 142ba07 56506e9 d4a2e62 c85385e 56506e9 14bf760 56506e9 ca36ef4 c85385e ff2c5a2 ca36ef4 56506e9 ca36ef4 56506e9 ca36ef4 56506e9 ca36ef4 56506e9 142ba07 56506e9 62c1c78 56506e9 62c1c78 c85385e 56506e9 ff2c5a2 c85385e 56506e9 c85385e 56506e9 ff2c5a2 c85385e 56506e9 142ba07 56506e9 abc080f 56506e9 ca36ef4 56506e9 ca36ef4 56506e9 ca36ef4 56506e9 62c1c78 56506e9 6a40489 56506e9 62c1c78 2fb61c4 62c1c78 56506e9 62c1c78 56506e9 62c1c78 56506e9 62c1c78 142ba07 56506e9 abc080f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
from openai import OpenAI
import gradio as gr
import json
from bot_actions import functions_dictionary, save_record
import os
CSS ="""
.contain { display: flex; flex-direction: column; }
.gradio-container { height: 100vh !important; }
#chatbot { flex-grow: 1; overflow: auto;}
footer {visibility: hidden}
"""
openAIToken = os.environ['openAIToken']
assistantId = os.environ['assistantId']
initial_message = os.environ['initialMessage']
client = OpenAI(api_key=openAIToken)
def handle_requires_action(data):
actions_results = []
for tool in data.required_action.submit_tool_outputs.tool_calls:
function_name = tool.function.name
function_args = json.loads(tool.function.arguments)
print(function_name)
print(function_args)
try:
result = functions_dictionary[tool.function.name](**function_args)
print("Function result:", result)
actions_results.append({"tool_output" : {"tool_call_id": tool.id, "output": result["message"]}})
except Exception as e:
print(e)
# Submit all tool_outputs at the same time
return actions_results
def create_thread_openai(sessionStorage):
streaming_thread = client.beta.threads.create()
sessionStorage["threadId"] = streaming_thread.id
return sessionStorage
def add_message_to_openai(text, threadId):
print("User message: ", text)
return client.beta.threads.messages.create(
thread_id=threadId,
role="user",
content=text
)
def transform_suggestions_into_list(string_of_suggestions):
local_message = None
parts = string_of_suggestions.split('#s#')
list_of_suggestions = json.loads(parts[0])
list_of_suggestions = [ x for x in list_of_suggestions if x]
if len(parts) > 1:
local_message = parts[1]
return list_of_suggestions, local_message
def create_suggestions_list(suggestions):
update_show = [gr.update(visible=True, value=w) for w in suggestions]
update_hide = [gr.update(visible=False, value="") for _ in range(6-len(suggestions))]
return update_show + update_hide
def process_text_chunk(text, list_of_suggestions, string_of_suggestions, is_loading_suggestions):
print(text, end="", flush=True)
local_message = None
if "[" in text:
is_loading_suggestions = True
if is_loading_suggestions != True:
local_message = text
else:
string_of_suggestions = string_of_suggestions + text
if "#s#" in string_of_suggestions:
is_loading_suggestions = False
list_of_suggestions, local_message = transform_suggestions_into_list(string_of_suggestions)
string_of_suggestions = ""
elif "]" in string_of_suggestions and "]#" not in string_of_suggestions and not string_of_suggestions.endswith("]"):
is_loading_suggestions = False
local_message = string_of_suggestions
string_of_suggestions = ""
return local_message, list_of_suggestions, string_of_suggestions, is_loading_suggestions
def handle_events(threadId, chat_history, storage):
list_of_suggestions = []
string_of_suggestions = ""
is_loading_suggestions = False
try:
with client.beta.threads.runs.stream(
thread_id=threadId,
assistant_id=assistantId
) as stream:
for event in stream:
if event.event == "thread.message.delta" and event.data.delta.content:
text = event.data.delta.content[0].text.value
local_message, list_of_suggestions, string_of_suggestions, is_loading_suggestions = process_text_chunk(text, list_of_suggestions, string_of_suggestions, is_loading_suggestions)
if local_message is not None:
chat_history[-1][1] += local_message
yield [ chat_history, storage]
if event.event == 'thread.run.requires_action':
result = handle_requires_action(event.data)
tool_outputs = [x["tool_output"] for x in result]
with client.beta.threads.runs.submit_tool_outputs_stream(
thread_id=stream.current_run.thread_id,
run_id=event.data.id,
tool_outputs=tool_outputs,
) as action_stream:
for text in action_stream.text_deltas:
local_message, list_of_suggestions, string_of_suggestions, is_loading_suggestions = process_text_chunk(text, list_of_suggestions, string_of_suggestions, is_loading_suggestions)
if local_message is not None:
chat_history[-1][1] += local_message
yield [chat_history, storage]
action_stream.close()
stream.until_done()
print("")
storage["list_of_suggestions"] = list_of_suggestions
return [chat_history, storage]
except Exception as e:
print(e)
chat_history[-1][1] = "Error occured during processing your message. Please try again"
yield [chat_history, storage]
def initiate_chatting(chat_history, storage):
threadId = storage["threadId"]
chat_history = [[None, ""]]
add_message_to_openai(initial_message, threadId)
for response in handle_events(threadId, chat_history, storage):
yield response
def respond_on_user_msg(chat_history, storage):
message = chat_history[-1][0]
threadId = storage["threadId"]
print("Responding for threadId: ", threadId)
chat_history[-1][1] = ""
add_message_to_openai(message, threadId)
for response in handle_events(threadId, chat_history, storage):
yield response
def create_application():
with gr.Blocks(css=CSS, fill_height=True) as demo:
storage = gr.State({})
chatbot = gr.Chatbot(label="Vehicle inspection bot", line_breaks=False, show_label=False, show_share_button=False, elem_id="chatbot", height=300)
btn_list = []
with gr.Row():
for i in range(6):
btn = gr.Button(visible=False, size="sm")
btn_list.append(btn)
msg = gr.Textbox(label="Answer", interactive=False)
def user(user_message, history):
return "", history + [[user_message, None]]
def update_suggestions(storage):
list_of_suggestions = storage['list_of_suggestions'] or []
btn_list = create_suggestions_list(list_of_suggestions)
return btn_list
def hide_suggestions():
return [gr.update(visible=False, value="") for _ in range(6)]
def disable_msg():
message_box = gr.Textbox(value=None, interactive=False)
return message_box
def enable_msg():
message_box = gr.Textbox(value=None, interactive=True)
return message_box
add_user_message_flow = [user, [msg,chatbot], [msg,chatbot]]
chat_response_flow = [respond_on_user_msg, [chatbot, storage], [chatbot, storage]]
update_suggestions_flow = [update_suggestions, storage, btn_list]
hide_suggestions_flow = [hide_suggestions, None, btn_list]
disable_msg_flow = [disable_msg, None, msg]
enable_msg_flow = [enable_msg, None, msg]
msg.submit(*add_user_message_flow
).then(*hide_suggestions_flow
).then(*disable_msg_flow
).then(*chat_response_flow
).then(*update_suggestions_flow
).then(*enable_msg_flow)
for sug_btn in btn_list:
add_suggestion_message_flow = [user, [sug_btn, chatbot], [msg, chatbot]]
sug_btn.click(*add_suggestion_message_flow
).then(*hide_suggestions_flow
).then(*disable_msg_flow
).then(*chat_response_flow
).then(*update_suggestions_flow
).then(*enable_msg_flow)
demo.load(create_thread_openai, inputs=storage, outputs=storage
).then(initiate_chatting, inputs=[chatbot, storage], outputs=[chatbot, storage]
).then(*update_suggestions_flow
).then(*enable_msg_flow)
return demo
if __name__ == "__main__":
demo = create_application()
demo.launch() |