File size: 7,654 Bytes
c85385e
142ba07
56506e9
 
d4a2e62
c85385e
56506e9
 
 
 
14bf760
56506e9
 
ca36ef4
c85385e
ff2c5a2
 
ca36ef4
 
56506e9
ca36ef4
56506e9
 
 
 
 
ca36ef4
 
 
 
 
 
 
56506e9
 
ca36ef4
56506e9
142ba07
56506e9
62c1c78
56506e9
62c1c78
c85385e
56506e9
ff2c5a2
c85385e
 
 
 
 
 
56506e9
c85385e
 
56506e9
ff2c5a2
c85385e
 
 
 
 
 
 
 
 
56506e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
142ba07
56506e9
abc080f
 
 
56506e9
 
 
 
 
 
 
 
 
 
 
 
 
ca36ef4
 
56506e9
 
 
 
ca36ef4
 
56506e9
 
 
 
ca36ef4
56506e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62c1c78
56506e9
6a40489
56506e9
62c1c78
 
2fb61c4
62c1c78
 
 
 
 
 
56506e9
 
62c1c78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56506e9
 
62c1c78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56506e9
 
62c1c78
 
 
142ba07
 
56506e9
abc080f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
from openai import OpenAI
import gradio as gr
import json
from bot_actions import functions_dictionary, save_record
import os
 
CSS ="""
.contain { display: flex; flex-direction: column; }
.gradio-container { height: 100vh !important; }
#chatbot { flex-grow: 1; overflow: auto;}
footer {visibility: hidden}
"""

openAIToken = os.environ['openAIToken']
assistantId = os.environ['assistantId']
initial_message = os.environ['initialMessage']

client = OpenAI(api_key=openAIToken)

def handle_requires_action(data):
  actions_results = []
  for tool in data.required_action.submit_tool_outputs.tool_calls:
    function_name = tool.function.name
    function_args = json.loads(tool.function.arguments)
    print(function_name)
    print(function_args)
    try:
      result = functions_dictionary[tool.function.name](**function_args)
      print("Function result:", result)
      actions_results.append({"tool_output" : {"tool_call_id": tool.id, "output": result["message"]}})
    except Exception as e:
      print(e)

    
  # Submit all tool_outputs at the same time
  return actions_results 


def create_thread_openai(sessionStorage):
  streaming_thread = client.beta.threads.create()
  sessionStorage["threadId"] = streaming_thread.id
  return sessionStorage

def add_message_to_openai(text, threadId):
  print("User message: ", text)
  return client.beta.threads.messages.create(
    thread_id=threadId,
    role="user",
    content=text
  )

def transform_suggestions_into_list(string_of_suggestions):
  local_message = None
  parts = string_of_suggestions.split('#s#')
  list_of_suggestions = json.loads(parts[0])
  list_of_suggestions = [ x for x in list_of_suggestions if x]
  if len(parts) > 1:
    local_message = parts[1]
  return list_of_suggestions, local_message

def create_suggestions_list(suggestions):
  update_show = [gr.update(visible=True, value=w) for w in suggestions]
  update_hide = [gr.update(visible=False, value="") for _ in range(6-len(suggestions))]
  return update_show + update_hide

def process_text_chunk(text, list_of_suggestions, string_of_suggestions, is_loading_suggestions):
  print(text, end="", flush=True)
  local_message = None
  if "[" in text:
    is_loading_suggestions = True

  if is_loading_suggestions != True:
    local_message = text
  else:
    string_of_suggestions = string_of_suggestions + text
    if "#s#" in string_of_suggestions:
      is_loading_suggestions = False
      list_of_suggestions, local_message = transform_suggestions_into_list(string_of_suggestions)
      string_of_suggestions = ""
    elif "]" in string_of_suggestions and "]#" not in string_of_suggestions and not string_of_suggestions.endswith("]"):
      is_loading_suggestions = False
      local_message = string_of_suggestions
      string_of_suggestions = ""
  return local_message, list_of_suggestions, string_of_suggestions, is_loading_suggestions

def handle_events(threadId, chat_history, storage):
  list_of_suggestions = []
  string_of_suggestions = ""
  is_loading_suggestions = False
  try:
    with client.beta.threads.runs.stream(
      thread_id=threadId,
      assistant_id=assistantId
    ) as stream:
      for event in stream:
        if event.event == "thread.message.delta" and event.data.delta.content:
          text = event.data.delta.content[0].text.value
          local_message, list_of_suggestions, string_of_suggestions, is_loading_suggestions = process_text_chunk(text, list_of_suggestions, string_of_suggestions, is_loading_suggestions)
          if local_message is not None:
            chat_history[-1][1] += local_message 
            yield [ chat_history,  storage]
        if event.event == 'thread.run.requires_action':
          result = handle_requires_action(event.data)
          tool_outputs = [x["tool_output"] for x in result]
          with client.beta.threads.runs.submit_tool_outputs_stream(
            thread_id=stream.current_run.thread_id,
            run_id=event.data.id,
            tool_outputs=tool_outputs,
          ) as action_stream:
            for text in action_stream.text_deltas:
              local_message, list_of_suggestions, string_of_suggestions, is_loading_suggestions = process_text_chunk(text, list_of_suggestions, string_of_suggestions, is_loading_suggestions)
              if local_message is not None:
                chat_history[-1][1] += local_message
                yield [chat_history, storage]
            action_stream.close()
      stream.until_done()
      print("")
      storage["list_of_suggestions"] = list_of_suggestions
      return [chat_history, storage]
  except Exception as e:
    print(e)
    chat_history[-1][1] = "Error occured during processing your message. Please try again"
    yield [chat_history, storage]

def initiate_chatting(chat_history, storage):
  threadId = storage["threadId"]
  chat_history = [[None, ""]]
  add_message_to_openai(initial_message, threadId)
  for response in handle_events(threadId, chat_history, storage):
    yield response 

def respond_on_user_msg(chat_history, storage):
  message = chat_history[-1][0]
  threadId = storage["threadId"]
  print("Responding for threadId: ", threadId)
  chat_history[-1][1] = ""
  add_message_to_openai(message, threadId)
  for response in handle_events(threadId, chat_history, storage):
    yield response

def create_application():
  with gr.Blocks(css=CSS, fill_height=True) as demo:
    storage = gr.State({})
    chatbot = gr.Chatbot(label="Vehicle inspection bot", line_breaks=False, show_label=False, show_share_button=False, elem_id="chatbot", height=300)
    btn_list = []
    with gr.Row():
      for i in range(6):
          btn = gr.Button(visible=False, size="sm")
          btn_list.append(btn)
    msg = gr.Textbox(label="Answer", interactive=False)

    def user(user_message, history):
        return "", history + [[user_message, None]]

    def update_suggestions(storage):
      list_of_suggestions = storage['list_of_suggestions'] or []
      btn_list = create_suggestions_list(list_of_suggestions)
      return btn_list
    
    def hide_suggestions(): 
      return [gr.update(visible=False, value="") for _ in range(6)]

    def disable_msg():
      message_box = gr.Textbox(value=None, interactive=False)
      return message_box
    
    def enable_msg():
      message_box = gr.Textbox(value=None, interactive=True)
      return message_box

    add_user_message_flow = [user, [msg,chatbot],  [msg,chatbot]]
    chat_response_flow = [respond_on_user_msg, [chatbot, storage], [chatbot, storage]]
    update_suggestions_flow = [update_suggestions, storage, btn_list]
    hide_suggestions_flow = [hide_suggestions, None, btn_list]
    disable_msg_flow = [disable_msg, None, msg] 
    enable_msg_flow = [enable_msg, None, msg]

    msg.submit(*add_user_message_flow
        ).then(*hide_suggestions_flow
        ).then(*disable_msg_flow
        ).then(*chat_response_flow
        ).then(*update_suggestions_flow
        ).then(*enable_msg_flow)
    for sug_btn in btn_list:
      add_suggestion_message_flow = [user, [sug_btn, chatbot], [msg, chatbot]]
      sug_btn.click(*add_suggestion_message_flow
              ).then(*hide_suggestions_flow
              ).then(*disable_msg_flow
              ).then(*chat_response_flow
              ).then(*update_suggestions_flow
              ).then(*enable_msg_flow)
    
    demo.load(create_thread_openai, inputs=storage, outputs=storage
        ).then(initiate_chatting, inputs=[chatbot, storage], outputs=[chatbot, storage]
        ).then(*update_suggestions_flow
        ).then(*enable_msg_flow)
  return demo

if __name__ == "__main__":
  demo = create_application()
  demo.launch()