File size: 9,771 Bytes
4a4a3ed
 
 
8328d75
4a4a3ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34ad792
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
"""
Copyright (c) 2024 The D-FINE Authors. All Rights Reserved.
"""
import gradio as gr
import os
import sys
import torch
import torch.nn as nn
import torchvision.transforms as T
import supervision as sv
from PIL import Image
import requests
import yaml
import numpy as np

from src.core import YAMLConfig


model_configs = {
    "dfine_n_coco":
        {"cfgfile": "configs/dfine/dfine_hgnetv2_n_coco.yml",
         "classinfofile": "configs/coco.yml",
         "weights": "https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_n_coco.pth"},
    "dfine_s_coco":
        {"cfgfile": "configs/dfine/dfine_hgnetv2_s_coco.yml",
         "classinfofile": "configs/coco.yml",
         "weights": "https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_s_coco.pth"},
    "dfine_m_coco":
        {"cfgfile": "configs/dfine/dfine_hgnetv2_m_coco.yml",
         "classinfofile": "configs/coco.yml",
         "weights": "https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_m_coco.pth"},
    "dfine_l_coco":
        {"cfgfile": "configs/dfine/dfine_hgnetv2_l_coco.yml",
         "classinfofile": "configs/coco.yml",
         "weights": "https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_l_coco.pth"},
    "dfine_x_coco":
        {"cfgfile": "configs/dfine/dfine_hgnetv2_x_coco.yml",
         "classinfofile": "configs/coco.yml",
         "weights": "https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_x_coco.pth"},
    "dfine_s_obj365":
        {"cfgfile": "configs/dfine/objects365/dfine_hgnetv2_s_obj365.yml",
         "classinfofile": "configs/obj365.yml",
         "weights": "https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_s_obj365.pth"},
    "dfine_m_obj365":
        {"cfgfile": "configs/dfine/objects365/dfine_hgnetv2_m_obj365.yml",
         "classinfofile": "configs/obj365.yml",
         "weights": "https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_m_obj365.pth"},
    "dfine_l_obj365":
        {"cfgfile": "configs/dfine/objects365/dfine_hgnetv2_l_obj365.yml",
         "classinfofile": "configs/obj365.yml",
         "weights": "https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_l_obj365.pth"},
    "dfine_l_obj365_e25":
        {"cfgfile": "configs/dfine/objects365/dfine_hgnetv2_l_obj365.yml",
         "classinfofile": "configs/obj365.yml",
         "weights": "https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_l_obj365_e25.pth"},
    "dfine_x_obj365":
        {"cfgfile": "configs/dfine/objects365/dfine_hgnetv2_x_obj365.yml",
         "classinfofile": "configs/obj365.yml",
         "weights": "https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_x_obj365.pth"},
    "dfine_s_obj2coco":
        {"cfgfile": "configs/dfine/objects365/dfine_hgnetv2_s_obj2coco.yml",
         "classinfofile": "configs/coco.yml",
         "weights": "https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_s_obj2coco.pth"},
    "dfine_m_obj2coco":
        {"cfgfile": "configs/dfine/objects365/dfine_hgnetv2_m_obj2coco.yml",
         "classinfofile": "configs/coco.yml",
         "weights": "https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_m_obj2coco.pth"},
    "dfine_l_obj2coco_e25":
        {"cfgfile": "configs/dfine/objects365/dfine_hgnetv2_l_obj2coco.yml",
         "classinfofile": "configs/coco.yml",
         "weights": "https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_l_obj2coco_e25.pth"},
    "dfine_x_obj2coco":
        {"cfgfile": "configs/dfine/objects365/dfine_hgnetv2_x_obj2coco.yml",
         "classinfofile": "configs/coco.yml",
         "weights": "https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_x_obj2coco.pth"},
}


def download_weights(model_name):
    """Download model weights if not already present"""
    weights_url = model_configs[model_name]["weights"]
    # Directory path to save weight files
    weights_dir = os.path.join(os.path.dirname(__file__), "weights")
    # Weight file path
    weights_path = os.path.join(weights_dir, model_name + ".pth")
    
    # Create weights directory if it doesn't exist
    if not os.path.exists(weights_dir):
        os.makedirs(weights_dir)
        print(f"Created directory: {weights_dir}")
    
    # Check if file already exists
    if os.path.exists(weights_path):
        print(f"Weights file already exists at: {weights_path}")
        return weights_path
    
    # Download file
    print(f"Downloading weights from {weights_url} to {weights_path}...")
    
    response = requests.get(weights_url, stream=True)
    response.raise_for_status()  # Check for download errors
    
    with open(weights_path, 'wb') as f:
        for chunk in response.iter_content(chunk_size=8192):
            f.write(chunk)
    
    print(f"Downloaded weights to: {weights_path}")
    return weights_path


def process_image_for_gradio(model, device, image, model_name, threshold=0.4):
    """Process image function for Gradio interface"""
    if isinstance(image, np.ndarray):
        # Convert NumPy array to PIL image
        im_pil = Image.fromarray(image)
    else:
        im_pil = image
    
    # Load class information
    classinfofile = model_configs[model_name]["classinfofile"]
    classinfo = yaml.load(open(classinfofile, "r"), Loader=yaml.FullLoader)["names"]
    indexing_method = "0-based" if "coco" in classinfofile else "1-based"
    
    w, h = im_pil.size
    orig_size = torch.tensor([[w, h]]).to(device)

    transforms = T.Compose(
        [
            T.Resize((640, 640)),
            T.ToTensor(),
        ]
    )
    im_data = transforms(im_pil).unsqueeze(0).to(device)

    output = model(im_data, orig_size)
    labels, boxes, scores = output

    # Visualize results
    detections = sv.Detections(
        xyxy=boxes[0].detach().cpu().numpy(),
        confidence=scores[0].detach().cpu().numpy(),
        class_id=labels[0].detach().cpu().numpy().astype(int),
    )
    detections = detections[detections.confidence > threshold]

    text_scale = sv.calculate_optimal_text_scale(resolution_wh=im_pil.size)
    line_thickness = sv.calculate_optimal_line_thickness(resolution_wh=im_pil.size)

    box_annotator = sv.BoxAnnotator(thickness=line_thickness)
    label_annotator = sv.LabelAnnotator(text_scale=text_scale, smart_position=True)

    label_texts = [
        f"{classinfo[class_id if indexing_method == '0-based' else class_id - 1]} {confidence:.2f}"
        for class_id, confidence
        in zip(detections.class_id, detections.confidence)
    ]

    result_image = im_pil.copy()
    result_image = box_annotator.annotate(scene=result_image, detections=detections)
    result_image = label_annotator.annotate(
        scene=result_image,
        detections=detections,
        labels=label_texts
    )

    detection_info = [
        f"{classinfo[class_id if indexing_method == '0-based' else class_id - 1]}: {confidence:.2f}, bbox: [{xyxy[0]:.1f}, {xyxy[1]:.1f}, {xyxy[2]:.1f}, {xyxy[3]:.1f}]"
        for class_id, confidence, xyxy
        in zip(detections.class_id, detections.confidence, detections.xyxy)
    ]
    
    return result_image, "\n".join(detection_info)


class ModelWrapper(nn.Module):
    def __init__(self, cfg):
        super().__init__()
        self.model = cfg.model.deploy()
        self.postprocessor = cfg.postprocessor.deploy()

    def forward(self, images, orig_target_sizes):
        outputs = self.model(images)
        outputs = self.postprocessor(outputs, orig_target_sizes)
        return outputs


def load_model(model_name):
    cfgfile = model_configs[model_name]["cfgfile"]
    weights_path = download_weights(model_name)
    
    cfg = YAMLConfig(cfgfile, resume=weights_path)

    if "HGNetv2" in cfg.yaml_cfg:
        cfg.yaml_cfg["HGNetv2"]["pretrained"] = False

    checkpoint = torch.load(weights_path, map_location="cpu")
    state = checkpoint["ema"]["module"] if "ema" in checkpoint else checkpoint["model"]
    
    cfg.model.load_state_dict(state)

    device = "cuda" if torch.cuda.is_available() else "cpu"
    model = ModelWrapper(cfg).to(device)
    model.eval()

    return model, device


# Dictionary to store loaded models
loaded_models = {}

def process_image(image, model_name, confidence_threshold):
    """Main processing function for Gradio interface"""
    global loaded_models
    
    # Load model if not already loaded
    if model_name not in loaded_models:
        print(f"Loading model: {model_name}")
        model, device = load_model(model_name)
        loaded_models[model_name] = (model, device)
    else:
        print(f"Using cached model: {model_name}")
        model, device = loaded_models[model_name]
    
    # Process the image
    return process_image_for_gradio(model, device, image, model_name, confidence_threshold)


# Create Gradio interface
demo = gr.Interface(
    fn=process_image,
    inputs=[
        gr.Image(type="pil", label="Input Image"),
        gr.Dropdown(
            choices=list(model_configs.keys()), 
            value="dfine_n_coco", 
            label="Model Selection"
        ),
        gr.Slider(
            minimum=0.1, 
            maximum=0.9, 
            value=0.4, 
            step=0.05, 
            label="Confidence Threshold"
        )
    ],
    outputs=[
        gr.Image(type="pil", label="Detection Result"),
        gr.Textbox(label="Detected Objects")
    ],
    title="D-FINE Object Detection Demo",
    description="Upload an image to see object detection results using the D-FINE model. You can select different models and adjust the confidence threshold.",
    examples=[
        ["examples/image1.jpg", "dfine_n_coco", 0.4],
    ]
)

demo.launch(debug=True)