Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,771 Bytes
4a4a3ed 8328d75 4a4a3ed 34ad792 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
"""
Copyright (c) 2024 The D-FINE Authors. All Rights Reserved.
"""
import gradio as gr
import os
import sys
import torch
import torch.nn as nn
import torchvision.transforms as T
import supervision as sv
from PIL import Image
import requests
import yaml
import numpy as np
from src.core import YAMLConfig
model_configs = {
"dfine_n_coco":
{"cfgfile": "configs/dfine/dfine_hgnetv2_n_coco.yml",
"classinfofile": "configs/coco.yml",
"weights": "https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_n_coco.pth"},
"dfine_s_coco":
{"cfgfile": "configs/dfine/dfine_hgnetv2_s_coco.yml",
"classinfofile": "configs/coco.yml",
"weights": "https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_s_coco.pth"},
"dfine_m_coco":
{"cfgfile": "configs/dfine/dfine_hgnetv2_m_coco.yml",
"classinfofile": "configs/coco.yml",
"weights": "https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_m_coco.pth"},
"dfine_l_coco":
{"cfgfile": "configs/dfine/dfine_hgnetv2_l_coco.yml",
"classinfofile": "configs/coco.yml",
"weights": "https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_l_coco.pth"},
"dfine_x_coco":
{"cfgfile": "configs/dfine/dfine_hgnetv2_x_coco.yml",
"classinfofile": "configs/coco.yml",
"weights": "https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_x_coco.pth"},
"dfine_s_obj365":
{"cfgfile": "configs/dfine/objects365/dfine_hgnetv2_s_obj365.yml",
"classinfofile": "configs/obj365.yml",
"weights": "https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_s_obj365.pth"},
"dfine_m_obj365":
{"cfgfile": "configs/dfine/objects365/dfine_hgnetv2_m_obj365.yml",
"classinfofile": "configs/obj365.yml",
"weights": "https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_m_obj365.pth"},
"dfine_l_obj365":
{"cfgfile": "configs/dfine/objects365/dfine_hgnetv2_l_obj365.yml",
"classinfofile": "configs/obj365.yml",
"weights": "https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_l_obj365.pth"},
"dfine_l_obj365_e25":
{"cfgfile": "configs/dfine/objects365/dfine_hgnetv2_l_obj365.yml",
"classinfofile": "configs/obj365.yml",
"weights": "https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_l_obj365_e25.pth"},
"dfine_x_obj365":
{"cfgfile": "configs/dfine/objects365/dfine_hgnetv2_x_obj365.yml",
"classinfofile": "configs/obj365.yml",
"weights": "https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_x_obj365.pth"},
"dfine_s_obj2coco":
{"cfgfile": "configs/dfine/objects365/dfine_hgnetv2_s_obj2coco.yml",
"classinfofile": "configs/coco.yml",
"weights": "https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_s_obj2coco.pth"},
"dfine_m_obj2coco":
{"cfgfile": "configs/dfine/objects365/dfine_hgnetv2_m_obj2coco.yml",
"classinfofile": "configs/coco.yml",
"weights": "https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_m_obj2coco.pth"},
"dfine_l_obj2coco_e25":
{"cfgfile": "configs/dfine/objects365/dfine_hgnetv2_l_obj2coco.yml",
"classinfofile": "configs/coco.yml",
"weights": "https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_l_obj2coco_e25.pth"},
"dfine_x_obj2coco":
{"cfgfile": "configs/dfine/objects365/dfine_hgnetv2_x_obj2coco.yml",
"classinfofile": "configs/coco.yml",
"weights": "https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_x_obj2coco.pth"},
}
def download_weights(model_name):
"""Download model weights if not already present"""
weights_url = model_configs[model_name]["weights"]
# Directory path to save weight files
weights_dir = os.path.join(os.path.dirname(__file__), "weights")
# Weight file path
weights_path = os.path.join(weights_dir, model_name + ".pth")
# Create weights directory if it doesn't exist
if not os.path.exists(weights_dir):
os.makedirs(weights_dir)
print(f"Created directory: {weights_dir}")
# Check if file already exists
if os.path.exists(weights_path):
print(f"Weights file already exists at: {weights_path}")
return weights_path
# Download file
print(f"Downloading weights from {weights_url} to {weights_path}...")
response = requests.get(weights_url, stream=True)
response.raise_for_status() # Check for download errors
with open(weights_path, 'wb') as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
print(f"Downloaded weights to: {weights_path}")
return weights_path
def process_image_for_gradio(model, device, image, model_name, threshold=0.4):
"""Process image function for Gradio interface"""
if isinstance(image, np.ndarray):
# Convert NumPy array to PIL image
im_pil = Image.fromarray(image)
else:
im_pil = image
# Load class information
classinfofile = model_configs[model_name]["classinfofile"]
classinfo = yaml.load(open(classinfofile, "r"), Loader=yaml.FullLoader)["names"]
indexing_method = "0-based" if "coco" in classinfofile else "1-based"
w, h = im_pil.size
orig_size = torch.tensor([[w, h]]).to(device)
transforms = T.Compose(
[
T.Resize((640, 640)),
T.ToTensor(),
]
)
im_data = transforms(im_pil).unsqueeze(0).to(device)
output = model(im_data, orig_size)
labels, boxes, scores = output
# Visualize results
detections = sv.Detections(
xyxy=boxes[0].detach().cpu().numpy(),
confidence=scores[0].detach().cpu().numpy(),
class_id=labels[0].detach().cpu().numpy().astype(int),
)
detections = detections[detections.confidence > threshold]
text_scale = sv.calculate_optimal_text_scale(resolution_wh=im_pil.size)
line_thickness = sv.calculate_optimal_line_thickness(resolution_wh=im_pil.size)
box_annotator = sv.BoxAnnotator(thickness=line_thickness)
label_annotator = sv.LabelAnnotator(text_scale=text_scale, smart_position=True)
label_texts = [
f"{classinfo[class_id if indexing_method == '0-based' else class_id - 1]} {confidence:.2f}"
for class_id, confidence
in zip(detections.class_id, detections.confidence)
]
result_image = im_pil.copy()
result_image = box_annotator.annotate(scene=result_image, detections=detections)
result_image = label_annotator.annotate(
scene=result_image,
detections=detections,
labels=label_texts
)
detection_info = [
f"{classinfo[class_id if indexing_method == '0-based' else class_id - 1]}: {confidence:.2f}, bbox: [{xyxy[0]:.1f}, {xyxy[1]:.1f}, {xyxy[2]:.1f}, {xyxy[3]:.1f}]"
for class_id, confidence, xyxy
in zip(detections.class_id, detections.confidence, detections.xyxy)
]
return result_image, "\n".join(detection_info)
class ModelWrapper(nn.Module):
def __init__(self, cfg):
super().__init__()
self.model = cfg.model.deploy()
self.postprocessor = cfg.postprocessor.deploy()
def forward(self, images, orig_target_sizes):
outputs = self.model(images)
outputs = self.postprocessor(outputs, orig_target_sizes)
return outputs
def load_model(model_name):
cfgfile = model_configs[model_name]["cfgfile"]
weights_path = download_weights(model_name)
cfg = YAMLConfig(cfgfile, resume=weights_path)
if "HGNetv2" in cfg.yaml_cfg:
cfg.yaml_cfg["HGNetv2"]["pretrained"] = False
checkpoint = torch.load(weights_path, map_location="cpu")
state = checkpoint["ema"]["module"] if "ema" in checkpoint else checkpoint["model"]
cfg.model.load_state_dict(state)
device = "cuda" if torch.cuda.is_available() else "cpu"
model = ModelWrapper(cfg).to(device)
model.eval()
return model, device
# Dictionary to store loaded models
loaded_models = {}
def process_image(image, model_name, confidence_threshold):
"""Main processing function for Gradio interface"""
global loaded_models
# Load model if not already loaded
if model_name not in loaded_models:
print(f"Loading model: {model_name}")
model, device = load_model(model_name)
loaded_models[model_name] = (model, device)
else:
print(f"Using cached model: {model_name}")
model, device = loaded_models[model_name]
# Process the image
return process_image_for_gradio(model, device, image, model_name, confidence_threshold)
# Create Gradio interface
demo = gr.Interface(
fn=process_image,
inputs=[
gr.Image(type="pil", label="Input Image"),
gr.Dropdown(
choices=list(model_configs.keys()),
value="dfine_n_coco",
label="Model Selection"
),
gr.Slider(
minimum=0.1,
maximum=0.9,
value=0.4,
step=0.05,
label="Confidence Threshold"
)
],
outputs=[
gr.Image(type="pil", label="Detection Result"),
gr.Textbox(label="Detected Objects")
],
title="D-FINE Object Detection Demo",
description="Upload an image to see object detection results using the D-FINE model. You can select different models and adjust the confidence threshold.",
examples=[
["examples/image1.jpg", "dfine_n_coco", 0.4],
]
)
demo.launch(debug=True)
|