File size: 7,420 Bytes
e85fecb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
"""

# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved

COCO evaluator that works in distributed mode.

Mostly copy-paste from https://github.com/pytorch/vision/blob/edfd5a7/references/detection/coco_eval.py

The difference is that there is less copy-pasting from pycocotools

in the end of the file, as python3 can suppress prints with contextlib

"""

import contextlib
import copy
import os

import faster_coco_eval.core.mask as mask_util
import numpy as np
import torch
from faster_coco_eval import COCO, COCOeval_faster

from ...core import register
from ...misc import dist_utils

__all__ = [
    "CocoEvaluator",
]


@register()
class CocoEvaluator(object):
    def __init__(self, coco_gt, iou_types):
        assert isinstance(iou_types, (list, tuple))
        coco_gt = copy.deepcopy(coco_gt)
        self.coco_gt: COCO = coco_gt
        self.iou_types = iou_types

        self.coco_eval = {}
        for iou_type in iou_types:
            self.coco_eval[iou_type] = COCOeval_faster(
                coco_gt, iouType=iou_type, print_function=print, separate_eval=True
            )

        self.img_ids = []
        self.eval_imgs = {k: [] for k in iou_types}

    def cleanup(self):
        self.coco_eval = {}
        for iou_type in self.iou_types:
            self.coco_eval[iou_type] = COCOeval_faster(
                self.coco_gt, iouType=iou_type, print_function=print, separate_eval=True
            )
        self.img_ids = []
        self.eval_imgs = {k: [] for k in self.iou_types}

    def update(self, predictions):
        img_ids = list(np.unique(list(predictions.keys())))
        self.img_ids.extend(img_ids)

        for iou_type in self.iou_types:
            results = self.prepare(predictions, iou_type)
            coco_eval = self.coco_eval[iou_type]

            # suppress pycocotools prints
            with open(os.devnull, "w") as devnull:
                with contextlib.redirect_stdout(devnull):
                    coco_dt = self.coco_gt.loadRes(results) if results else COCO()
                    coco_eval.cocoDt = coco_dt
                    coco_eval.params.imgIds = list(img_ids)
                    coco_eval.evaluate()

            self.eval_imgs[iou_type].append(
                np.array(coco_eval._evalImgs_cpp).reshape(
                    len(coco_eval.params.catIds),
                    len(coco_eval.params.areaRng),
                    len(coco_eval.params.imgIds),
                )
            )

    def synchronize_between_processes(self):
        for iou_type in self.iou_types:
            img_ids, eval_imgs = merge(self.img_ids, self.eval_imgs[iou_type])

            coco_eval = self.coco_eval[iou_type]
            coco_eval.params.imgIds = img_ids
            coco_eval._paramsEval = copy.deepcopy(coco_eval.params)
            coco_eval._evalImgs_cpp = eval_imgs

    def accumulate(self):
        for coco_eval in self.coco_eval.values():
            coco_eval.accumulate()

    def summarize(self):
        for iou_type, coco_eval in self.coco_eval.items():
            print("IoU metric: {}".format(iou_type))
            coco_eval.summarize()

    def prepare(self, predictions, iou_type):
        if iou_type == "bbox":
            return self.prepare_for_coco_detection(predictions)
        elif iou_type == "segm":
            return self.prepare_for_coco_segmentation(predictions)
        elif iou_type == "keypoints":
            return self.prepare_for_coco_keypoint(predictions)
        else:
            raise ValueError("Unknown iou type {}".format(iou_type))

    def prepare_for_coco_detection(self, predictions):
        coco_results = []
        for original_id, prediction in predictions.items():
            if len(prediction) == 0:
                continue

            boxes = prediction["boxes"]
            boxes = convert_to_xywh(boxes).tolist()
            scores = prediction["scores"].tolist()
            labels = prediction["labels"].tolist()

            coco_results.extend(
                [
                    {
                        "image_id": original_id,
                        "category_id": labels[k],
                        "bbox": box,
                        "score": scores[k],
                    }
                    for k, box in enumerate(boxes)
                ]
            )
        return coco_results

    def prepare_for_coco_segmentation(self, predictions):
        coco_results = []
        for original_id, prediction in predictions.items():
            if len(prediction) == 0:
                continue

            scores = prediction["scores"]
            labels = prediction["labels"]
            masks = prediction["masks"]

            masks = masks > 0.5

            scores = prediction["scores"].tolist()
            labels = prediction["labels"].tolist()

            rles = [
                mask_util.encode(np.array(mask[0, :, :, np.newaxis], dtype=np.uint8, order="F"))[0]
                for mask in masks
            ]
            for rle in rles:
                rle["counts"] = rle["counts"].decode("utf-8")

            coco_results.extend(
                [
                    {
                        "image_id": original_id,
                        "category_id": labels[k],
                        "segmentation": rle,
                        "score": scores[k],
                    }
                    for k, rle in enumerate(rles)
                ]
            )
        return coco_results

    def prepare_for_coco_keypoint(self, predictions):
        coco_results = []
        for original_id, prediction in predictions.items():
            if len(prediction) == 0:
                continue

            boxes = prediction["boxes"]
            boxes = convert_to_xywh(boxes).tolist()
            scores = prediction["scores"].tolist()
            labels = prediction["labels"].tolist()
            keypoints = prediction["keypoints"]
            keypoints = keypoints.flatten(start_dim=1).tolist()

            coco_results.extend(
                [
                    {
                        "image_id": original_id,
                        "category_id": labels[k],
                        "keypoints": keypoint,
                        "score": scores[k],
                    }
                    for k, keypoint in enumerate(keypoints)
                ]
            )
        return coco_results


def convert_to_xywh(boxes):
    xmin, ymin, xmax, ymax = boxes.unbind(1)
    return torch.stack((xmin, ymin, xmax - xmin, ymax - ymin), dim=1)


def merge(img_ids, eval_imgs):
    all_img_ids = dist_utils.all_gather(img_ids)
    all_eval_imgs = dist_utils.all_gather(eval_imgs)

    merged_img_ids = []
    for p in all_img_ids:
        merged_img_ids.extend(p)

    merged_eval_imgs = []
    for p in all_eval_imgs:
        merged_eval_imgs.extend(p)

    merged_img_ids = np.array(merged_img_ids)
    merged_eval_imgs = np.concatenate(merged_eval_imgs, axis=2).ravel()
    # merged_eval_imgs = np.array(merged_eval_imgs).T.ravel()

    # keep only unique (and in sorted order) images
    merged_img_ids, idx = np.unique(merged_img_ids, return_index=True)

    return merged_img_ids.tolist(), merged_eval_imgs.tolist()