Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,787 Bytes
e85fecb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
"""
Copied from RT-DETR (https://github.com/lyuwenyu/RT-DETR)
Copyright(c) 2023 lyuwenyu. All Rights Reserved.
"""
import math
import warnings
import torch
import torch.nn as nn
import torch.nn.functional as F
from ...core import register
from .common import get_activation
def autopad(k, p=None):
if p is None:
p = k // 2 if isinstance(k, int) else [x // 2 for x in k]
return p
def make_divisible(c, d):
return math.ceil(c / d) * d
class Conv(nn.Module):
def __init__(self, cin, cout, k=1, s=1, p=None, g=1, act="silu") -> None:
super().__init__()
self.conv = nn.Conv2d(cin, cout, k, s, autopad(k, p), groups=g, bias=False)
self.bn = nn.BatchNorm2d(cout)
self.act = get_activation(act, inplace=True)
def forward(self, x):
return self.act(self.bn(self.conv(x)))
class Bottleneck(nn.Module):
# Standard bottleneck
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5, act="silu"):
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1, act=act)
self.cv2 = Conv(c_, c2, 3, 1, g=g, act=act)
self.add = shortcut and c1 == c2
def forward(self, x):
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
class C3(nn.Module):
# CSP Bottleneck with 3 convolutions
def __init__(
self, c1, c2, n=1, shortcut=True, g=1, e=0.5, act="silu"
): # ch_in, ch_out, number, shortcut, groups, expansion
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1, act=act)
self.cv2 = Conv(c1, c_, 1, 1, act=act)
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0, act=act) for _ in range(n)))
self.cv3 = Conv(2 * c_, c2, 1, act=act)
def forward(self, x):
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))
class SPPF(nn.Module):
# Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
def __init__(self, c1, c2, k=5, act="silu"): # equivalent to SPP(k=(5, 9, 13))
super().__init__()
c_ = c1 // 2 # hidden channels
self.cv1 = Conv(c1, c_, 1, 1, act=act)
self.cv2 = Conv(c_ * 4, c2, 1, 1, act=act)
self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
def forward(self, x):
x = self.cv1(x)
with warnings.catch_warnings():
warnings.simplefilter("ignore") # suppress torch 1.9.0 max_pool2d() warning
y1 = self.m(x)
y2 = self.m(y1)
return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1))
@register()
class CSPDarkNet(nn.Module):
__share__ = ["depth_multi", "width_multi"]
def __init__(
self,
in_channels=3,
width_multi=1.0,
depth_multi=1.0,
return_idx=[2, 3, -1],
act="silu",
) -> None:
super().__init__()
channels = [64, 128, 256, 512, 1024]
channels = [make_divisible(c * width_multi, 8) for c in channels]
depths = [3, 6, 9, 3]
depths = [max(round(d * depth_multi), 1) for d in depths]
self.layers = nn.ModuleList([Conv(in_channels, channels[0], 6, 2, 2, act=act)])
for i, (c, d) in enumerate(zip(channels, depths), 1):
layer = nn.Sequential(
*[Conv(c, channels[i], 3, 2, act=act), C3(channels[i], channels[i], n=d, act=act)]
)
self.layers.append(layer)
self.layers.append(SPPF(channels[-1], channels[-1], k=5, act=act))
self.return_idx = return_idx
self.out_channels = [channels[i] for i in self.return_idx]
self.strides = [[2, 4, 8, 16, 32][i] for i in self.return_idx]
self.depths = depths
self.act = act
def forward(self, x):
outputs = []
for _, m in enumerate(self.layers):
x = m(x)
outputs.append(x)
return [outputs[i] for i in self.return_idx]
@register()
class CSPPAN(nn.Module):
"""
P5 ---> 1x1 ---------------------------------> concat --> c3 --> det
| up | conv /2
P4 ---> concat ---> c3 ---> 1x1 --> concat ---> c3 -----------> det
| up | conv /2
P3 -----------------------> concat ---> c3 ---------------------> det
"""
__share__ = [
"depth_multi",
]
def __init__(self, in_channels=[256, 512, 1024], depth_multi=1.0, act="silu") -> None:
super().__init__()
depth = max(round(3 * depth_multi), 1)
self.out_channels = in_channels
self.fpn_stems = nn.ModuleList(
[
Conv(cin, cout, 1, 1, act=act)
for cin, cout in zip(in_channels[::-1], in_channels[::-1][1:])
]
)
self.fpn_csps = nn.ModuleList(
[
C3(cin, cout, depth, False, act=act)
for cin, cout in zip(in_channels[::-1], in_channels[::-1][1:])
]
)
self.pan_stems = nn.ModuleList([Conv(c, c, 3, 2, act=act) for c in in_channels[:-1]])
self.pan_csps = nn.ModuleList([C3(c, c, depth, False, act=act) for c in in_channels[1:]])
def forward(self, feats):
fpn_feats = []
for i, feat in enumerate(feats[::-1]):
if i == 0:
feat = self.fpn_stems[i](feat)
fpn_feats.append(feat)
else:
_feat = F.interpolate(fpn_feats[-1], scale_factor=2, mode="nearest")
feat = torch.concat([_feat, feat], dim=1)
feat = self.fpn_csps[i - 1](feat)
if i < len(self.fpn_stems):
feat = self.fpn_stems[i](feat)
fpn_feats.append(feat)
pan_feats = []
for i, feat in enumerate(fpn_feats[::-1]):
if i == 0:
pan_feats.append(feat)
else:
_feat = self.pan_stems[i - 1](pan_feats[-1])
feat = torch.concat([_feat, feat], dim=1)
feat = self.pan_csps[i - 1](feat)
pan_feats.append(feat)
return pan_feats
if __name__ == "__main__":
data = torch.rand(1, 3, 320, 640)
width_multi = 0.75
depth_multi = 0.33
m = CSPDarkNet(3, width_multi=width_multi, depth_multi=depth_multi, act="silu")
outputs = m(data)
print([o.shape for o in outputs])
m = CSPPAN(in_channels=m.out_channels, depth_multi=depth_multi, act="silu")
outputs = m(outputs)
print([o.shape for o in outputs])
|