File size: 17,733 Bytes
e85fecb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
"""

D-FINE: Redefine Regression Task of DETRs as Fine-grained Distribution Refinement

Copyright (c) 2024 The D-FINE Authors. All Rights Reserved.

---------------------------------------------------------------------------------

Modified from RT-DETR (https://github.com/lyuwenyu/RT-DETR)

Copyright (c) 2023 lyuwenyu. All Rights Reserved.

"""

import copy
from collections import OrderedDict

import torch
import torch.nn as nn
import torch.nn.functional as F

from ...core import register
from .utils import get_activation

__all__ = ["HybridEncoder"]


class ConvNormLayer_fuse(nn.Module):
    def __init__(self, ch_in, ch_out, kernel_size, stride, g=1, padding=None, bias=False, act=None):
        super().__init__()
        padding = (kernel_size - 1) // 2 if padding is None else padding
        self.conv = nn.Conv2d(
            ch_in, ch_out, kernel_size, stride, groups=g, padding=padding, bias=bias
        )
        self.norm = nn.BatchNorm2d(ch_out)
        self.act = nn.Identity() if act is None else get_activation(act)
        self.ch_in, self.ch_out, self.kernel_size, self.stride, self.g, self.padding, self.bias = (
            ch_in,
            ch_out,
            kernel_size,
            stride,
            g,
            padding,
            bias,
        )

    def forward(self, x):
        if hasattr(self, "conv_bn_fused"):
            y = self.conv_bn_fused(x)
        else:
            y = self.norm(self.conv(x))
        return self.act(y)

    def convert_to_deploy(self):
        if not hasattr(self, "conv_bn_fused"):
            self.conv_bn_fused = nn.Conv2d(
                self.ch_in,
                self.ch_out,
                self.kernel_size,
                self.stride,
                groups=self.g,
                padding=self.padding,
                bias=True,
            )

        kernel, bias = self.get_equivalent_kernel_bias()
        self.conv_bn_fused.weight.data = kernel
        self.conv_bn_fused.bias.data = bias
        self.__delattr__("conv")
        self.__delattr__("norm")

    def get_equivalent_kernel_bias(self):
        kernel3x3, bias3x3 = self._fuse_bn_tensor()

        return kernel3x3, bias3x3

    def _fuse_bn_tensor(self):
        kernel = self.conv.weight
        running_mean = self.norm.running_mean
        running_var = self.norm.running_var
        gamma = self.norm.weight
        beta = self.norm.bias
        eps = self.norm.eps
        std = (running_var + eps).sqrt()
        t = (gamma / std).reshape(-1, 1, 1, 1)
        return kernel * t, beta - running_mean * gamma / std


class ConvNormLayer(nn.Module):
    def __init__(self, ch_in, ch_out, kernel_size, stride, g=1, padding=None, bias=False, act=None):
        super().__init__()
        padding = (kernel_size - 1) // 2 if padding is None else padding
        self.conv = nn.Conv2d(
            ch_in, ch_out, kernel_size, stride, groups=g, padding=padding, bias=bias
        )
        self.norm = nn.BatchNorm2d(ch_out)
        self.act = nn.Identity() if act is None else get_activation(act)

    def forward(self, x):
        return self.act(self.norm(self.conv(x)))


class SCDown(nn.Module):
    def __init__(self, c1, c2, k, s):
        super().__init__()
        self.cv1 = ConvNormLayer_fuse(c1, c2, 1, 1)
        self.cv2 = ConvNormLayer_fuse(c2, c2, k, s, c2)

    def forward(self, x):
        return self.cv2(self.cv1(x))


class VGGBlock(nn.Module):
    def __init__(self, ch_in, ch_out, act="relu"):
        super().__init__()
        self.ch_in = ch_in
        self.ch_out = ch_out
        self.conv1 = ConvNormLayer(ch_in, ch_out, 3, 1, padding=1, act=None)
        self.conv2 = ConvNormLayer(ch_in, ch_out, 1, 1, padding=0, act=None)
        self.act = nn.Identity() if act is None else act

    def forward(self, x):
        if hasattr(self, "conv"):
            y = self.conv(x)
        else:
            y = self.conv1(x) + self.conv2(x)

        return self.act(y)

    def convert_to_deploy(self):
        if not hasattr(self, "conv"):
            self.conv = nn.Conv2d(self.ch_in, self.ch_out, 3, 1, padding=1)

        kernel, bias = self.get_equivalent_kernel_bias()
        self.conv.weight.data = kernel
        self.conv.bias.data = bias
        self.__delattr__("conv1")
        self.__delattr__("conv2")

    def get_equivalent_kernel_bias(self):
        kernel3x3, bias3x3 = self._fuse_bn_tensor(self.conv1)
        kernel1x1, bias1x1 = self._fuse_bn_tensor(self.conv2)

        return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1), bias3x3 + bias1x1

    def _pad_1x1_to_3x3_tensor(self, kernel1x1):
        if kernel1x1 is None:
            return 0
        else:
            return F.pad(kernel1x1, [1, 1, 1, 1])

    def _fuse_bn_tensor(self, branch: ConvNormLayer):
        if branch is None:
            return 0, 0
        kernel = branch.conv.weight
        running_mean = branch.norm.running_mean
        running_var = branch.norm.running_var
        gamma = branch.norm.weight
        beta = branch.norm.bias
        eps = branch.norm.eps
        std = (running_var + eps).sqrt()
        t = (gamma / std).reshape(-1, 1, 1, 1)
        return kernel * t, beta - running_mean * gamma / std


class ELAN(nn.Module):
    # csp-elan
    def __init__(self, c1, c2, c3, c4, n=2, bias=False, act="silu", bottletype=VGGBlock):
        super().__init__()
        self.c = c3
        self.cv1 = ConvNormLayer_fuse(c1, c3, 1, 1, bias=bias, act=act)
        self.cv2 = nn.Sequential(
            bottletype(c3 // 2, c4, act=get_activation(act)),
            ConvNormLayer_fuse(c4, c4, 3, 1, bias=bias, act=act),
        )
        self.cv3 = nn.Sequential(
            bottletype(c4, c4, act=get_activation(act)),
            ConvNormLayer_fuse(c4, c4, 3, 1, bias=bias, act=act),
        )
        self.cv4 = ConvNormLayer_fuse(c3 + (2 * c4), c2, 1, 1, bias=bias, act=act)

    def forward(self, x):
        # y = [self.cv1(x)]
        y = list(self.cv1(x).chunk(2, 1))
        y.extend((m(y[-1])) for m in [self.cv2, self.cv3])
        return self.cv4(torch.cat(y, 1))


class RepNCSPELAN4(nn.Module):
    # csp-elan
    def __init__(self, c1, c2, c3, c4, n=3, bias=False, act="silu"):
        super().__init__()
        self.c = c3 // 2
        self.cv1 = ConvNormLayer_fuse(c1, c3, 1, 1, bias=bias, act=act)
        self.cv2 = nn.Sequential(
            CSPLayer(c3 // 2, c4, n, 1, bias=bias, act=act, bottletype=VGGBlock),
            ConvNormLayer_fuse(c4, c4, 3, 1, bias=bias, act=act),
        )
        self.cv3 = nn.Sequential(
            CSPLayer(c4, c4, n, 1, bias=bias, act=act, bottletype=VGGBlock),
            ConvNormLayer_fuse(c4, c4, 3, 1, bias=bias, act=act),
        )
        self.cv4 = ConvNormLayer_fuse(c3 + (2 * c4), c2, 1, 1, bias=bias, act=act)

    def forward_chunk(self, x):
        y = list(self.cv1(x).chunk(2, 1))
        y.extend((m(y[-1])) for m in [self.cv2, self.cv3])
        return self.cv4(torch.cat(y, 1))

    def forward(self, x):
        y = list(self.cv1(x).split((self.c, self.c), 1))
        y.extend(m(y[-1]) for m in [self.cv2, self.cv3])
        return self.cv4(torch.cat(y, 1))


class CSPLayer(nn.Module):
    def __init__(

        self,

        in_channels,

        out_channels,

        num_blocks=3,

        expansion=1.0,

        bias=False,

        act="silu",

        bottletype=VGGBlock,

    ):
        super(CSPLayer, self).__init__()
        hidden_channels = int(out_channels * expansion)
        self.conv1 = ConvNormLayer_fuse(in_channels, hidden_channels, 1, 1, bias=bias, act=act)
        self.conv2 = ConvNormLayer_fuse(in_channels, hidden_channels, 1, 1, bias=bias, act=act)
        self.bottlenecks = nn.Sequential(
            *[
                bottletype(hidden_channels, hidden_channels, act=get_activation(act))
                for _ in range(num_blocks)
            ]
        )
        if hidden_channels != out_channels:
            self.conv3 = ConvNormLayer_fuse(hidden_channels, out_channels, 1, 1, bias=bias, act=act)
        else:
            self.conv3 = nn.Identity()

    def forward(self, x):
        x_1 = self.conv1(x)
        x_1 = self.bottlenecks(x_1)
        x_2 = self.conv2(x)
        return self.conv3(x_1 + x_2)


# transformer
class TransformerEncoderLayer(nn.Module):
    def __init__(

        self,

        d_model,

        nhead,

        dim_feedforward=2048,

        dropout=0.1,

        activation="relu",

        normalize_before=False,

    ):
        super().__init__()
        self.normalize_before = normalize_before

        self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout, batch_first=True)

        self.linear1 = nn.Linear(d_model, dim_feedforward)
        self.dropout = nn.Dropout(dropout)
        self.linear2 = nn.Linear(dim_feedforward, d_model)

        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.dropout1 = nn.Dropout(dropout)
        self.dropout2 = nn.Dropout(dropout)
        self.activation = get_activation(activation)

    @staticmethod
    def with_pos_embed(tensor, pos_embed):
        return tensor if pos_embed is None else tensor + pos_embed

    def forward(self, src, src_mask=None, pos_embed=None) -> torch.Tensor:
        residual = src
        if self.normalize_before:
            src = self.norm1(src)
        q = k = self.with_pos_embed(src, pos_embed)
        src, _ = self.self_attn(q, k, value=src, attn_mask=src_mask)

        src = residual + self.dropout1(src)
        if not self.normalize_before:
            src = self.norm1(src)

        residual = src
        if self.normalize_before:
            src = self.norm2(src)
        src = self.linear2(self.dropout(self.activation(self.linear1(src))))
        src = residual + self.dropout2(src)
        if not self.normalize_before:
            src = self.norm2(src)
        return src


class TransformerEncoder(nn.Module):
    def __init__(self, encoder_layer, num_layers, norm=None):
        super(TransformerEncoder, self).__init__()
        self.layers = nn.ModuleList([copy.deepcopy(encoder_layer) for _ in range(num_layers)])
        self.num_layers = num_layers
        self.norm = norm

    def forward(self, src, src_mask=None, pos_embed=None) -> torch.Tensor:
        output = src
        for layer in self.layers:
            output = layer(output, src_mask=src_mask, pos_embed=pos_embed)

        if self.norm is not None:
            output = self.norm(output)

        return output


@register()
class HybridEncoder(nn.Module):
    __share__ = [
        "eval_spatial_size",
    ]

    def __init__(

        self,

        in_channels=[512, 1024, 2048],

        feat_strides=[8, 16, 32],

        hidden_dim=256,

        nhead=8,

        dim_feedforward=1024,

        dropout=0.0,

        enc_act="gelu",

        use_encoder_idx=[2],

        num_encoder_layers=1,

        pe_temperature=10000,

        expansion=1.0,

        depth_mult=1.0,

        act="silu",

        eval_spatial_size=None,

    ):
        super().__init__()
        self.in_channels = in_channels
        self.feat_strides = feat_strides
        self.hidden_dim = hidden_dim
        self.use_encoder_idx = use_encoder_idx
        self.num_encoder_layers = num_encoder_layers
        self.pe_temperature = pe_temperature
        self.eval_spatial_size = eval_spatial_size
        self.out_channels = [hidden_dim for _ in range(len(in_channels))]
        self.out_strides = feat_strides

        # channel projection
        self.input_proj = nn.ModuleList()
        for in_channel in in_channels:
            proj = nn.Sequential(
                OrderedDict(
                    [
                        ("conv", nn.Conv2d(in_channel, hidden_dim, kernel_size=1, bias=False)),
                        ("norm", nn.BatchNorm2d(hidden_dim)),
                    ]
                )
            )

            self.input_proj.append(proj)

        # encoder transformer
        encoder_layer = TransformerEncoderLayer(
            hidden_dim,
            nhead=nhead,
            dim_feedforward=dim_feedforward,
            dropout=dropout,
            activation=enc_act,
        )

        self.encoder = nn.ModuleList(
            [
                TransformerEncoder(copy.deepcopy(encoder_layer), num_encoder_layers)
                for _ in range(len(use_encoder_idx))
            ]
        )

        # top-down fpn
        self.lateral_convs = nn.ModuleList()
        self.fpn_blocks = nn.ModuleList()
        for _ in range(len(in_channels) - 1, 0, -1):
            self.lateral_convs.append(ConvNormLayer_fuse(hidden_dim, hidden_dim, 1, 1))
            self.fpn_blocks.append(
                RepNCSPELAN4(
                    hidden_dim * 2,
                    hidden_dim,
                    hidden_dim * 2,
                    round(expansion * hidden_dim // 2),
                    round(3 * depth_mult),
                )
                # CSPLayer(hidden_dim * 2, hidden_dim, round(3 * depth_mult), act=act, expansion=expansion, bottletype=VGGBlock)
            )

        # bottom-up pan
        self.downsample_convs = nn.ModuleList()
        self.pan_blocks = nn.ModuleList()
        for _ in range(len(in_channels) - 1):
            self.downsample_convs.append(
                nn.Sequential(
                    SCDown(hidden_dim, hidden_dim, 3, 2),
                )
            )
            self.pan_blocks.append(
                RepNCSPELAN4(
                    hidden_dim * 2,
                    hidden_dim,
                    hidden_dim * 2,
                    round(expansion * hidden_dim // 2),
                    round(3 * depth_mult),
                )
                # CSPLayer(hidden_dim * 2, hidden_dim, round(3 * depth_mult), act=act, expansion=expansion, bottletype=VGGBlock)
            )

        self._reset_parameters()

    def _reset_parameters(self):
        if self.eval_spatial_size:
            for idx in self.use_encoder_idx:
                stride = self.feat_strides[idx]
                pos_embed = self.build_2d_sincos_position_embedding(
                    self.eval_spatial_size[1] // stride,
                    self.eval_spatial_size[0] // stride,
                    self.hidden_dim,
                    self.pe_temperature,
                )
                setattr(self, f"pos_embed{idx}", pos_embed)
                # self.register_buffer(f'pos_embed{idx}', pos_embed)

    @staticmethod
    def build_2d_sincos_position_embedding(w, h, embed_dim=256, temperature=10000.0):
        """ """
        grid_w = torch.arange(int(w), dtype=torch.float32)
        grid_h = torch.arange(int(h), dtype=torch.float32)
        grid_w, grid_h = torch.meshgrid(grid_w, grid_h, indexing="ij")
        assert (
            embed_dim % 4 == 0
        ), "Embed dimension must be divisible by 4 for 2D sin-cos position embedding"
        pos_dim = embed_dim // 4
        omega = torch.arange(pos_dim, dtype=torch.float32) / pos_dim
        omega = 1.0 / (temperature**omega)

        out_w = grid_w.flatten()[..., None] @ omega[None]
        out_h = grid_h.flatten()[..., None] @ omega[None]

        return torch.concat([out_w.sin(), out_w.cos(), out_h.sin(), out_h.cos()], dim=1)[None, :, :]

    def forward(self, feats):
        assert len(feats) == len(self.in_channels)
        proj_feats = [self.input_proj[i](feat) for i, feat in enumerate(feats)]

        # encoder
        if self.num_encoder_layers > 0:
            for i, enc_ind in enumerate(self.use_encoder_idx):
                h, w = proj_feats[enc_ind].shape[2:]
                # flatten [B, C, H, W] to [B, HxW, C]
                src_flatten = proj_feats[enc_ind].flatten(2).permute(0, 2, 1)
                if self.training or self.eval_spatial_size is None:
                    pos_embed = self.build_2d_sincos_position_embedding(
                        w, h, self.hidden_dim, self.pe_temperature
                    ).to(src_flatten.device)
                else:
                    pos_embed = getattr(self, f"pos_embed{enc_ind}", None).to(src_flatten.device)

                memory: torch.Tensor = self.encoder[i](src_flatten, pos_embed=pos_embed)
                proj_feats[enc_ind] = (
                    memory.permute(0, 2, 1).reshape(-1, self.hidden_dim, h, w).contiguous()
                )

        # broadcasting and fusion
        inner_outs = [proj_feats[-1]]
        for idx in range(len(self.in_channels) - 1, 0, -1):
            feat_heigh = inner_outs[0]
            feat_low = proj_feats[idx - 1]
            feat_heigh = self.lateral_convs[len(self.in_channels) - 1 - idx](feat_heigh)
            inner_outs[0] = feat_heigh
            upsample_feat = F.interpolate(feat_heigh, scale_factor=2.0, mode="nearest")
            inner_out = self.fpn_blocks[len(self.in_channels) - 1 - idx](
                torch.concat([upsample_feat, feat_low], dim=1)
            )
            inner_outs.insert(0, inner_out)

        outs = [inner_outs[0]]
        for idx in range(len(self.in_channels) - 1):
            feat_low = outs[-1]
            feat_height = inner_outs[idx + 1]
            downsample_feat = self.downsample_convs[idx](feat_low)
            out = self.pan_blocks[idx](torch.concat([downsample_feat, feat_height], dim=1))
            outs.append(out)

        return outs