Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,733 Bytes
e85fecb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 |
"""
D-FINE: Redefine Regression Task of DETRs as Fine-grained Distribution Refinement
Copyright (c) 2024 The D-FINE Authors. All Rights Reserved.
---------------------------------------------------------------------------------
Modified from RT-DETR (https://github.com/lyuwenyu/RT-DETR)
Copyright (c) 2023 lyuwenyu. All Rights Reserved.
"""
import copy
from collections import OrderedDict
import torch
import torch.nn as nn
import torch.nn.functional as F
from ...core import register
from .utils import get_activation
__all__ = ["HybridEncoder"]
class ConvNormLayer_fuse(nn.Module):
def __init__(self, ch_in, ch_out, kernel_size, stride, g=1, padding=None, bias=False, act=None):
super().__init__()
padding = (kernel_size - 1) // 2 if padding is None else padding
self.conv = nn.Conv2d(
ch_in, ch_out, kernel_size, stride, groups=g, padding=padding, bias=bias
)
self.norm = nn.BatchNorm2d(ch_out)
self.act = nn.Identity() if act is None else get_activation(act)
self.ch_in, self.ch_out, self.kernel_size, self.stride, self.g, self.padding, self.bias = (
ch_in,
ch_out,
kernel_size,
stride,
g,
padding,
bias,
)
def forward(self, x):
if hasattr(self, "conv_bn_fused"):
y = self.conv_bn_fused(x)
else:
y = self.norm(self.conv(x))
return self.act(y)
def convert_to_deploy(self):
if not hasattr(self, "conv_bn_fused"):
self.conv_bn_fused = nn.Conv2d(
self.ch_in,
self.ch_out,
self.kernel_size,
self.stride,
groups=self.g,
padding=self.padding,
bias=True,
)
kernel, bias = self.get_equivalent_kernel_bias()
self.conv_bn_fused.weight.data = kernel
self.conv_bn_fused.bias.data = bias
self.__delattr__("conv")
self.__delattr__("norm")
def get_equivalent_kernel_bias(self):
kernel3x3, bias3x3 = self._fuse_bn_tensor()
return kernel3x3, bias3x3
def _fuse_bn_tensor(self):
kernel = self.conv.weight
running_mean = self.norm.running_mean
running_var = self.norm.running_var
gamma = self.norm.weight
beta = self.norm.bias
eps = self.norm.eps
std = (running_var + eps).sqrt()
t = (gamma / std).reshape(-1, 1, 1, 1)
return kernel * t, beta - running_mean * gamma / std
class ConvNormLayer(nn.Module):
def __init__(self, ch_in, ch_out, kernel_size, stride, g=1, padding=None, bias=False, act=None):
super().__init__()
padding = (kernel_size - 1) // 2 if padding is None else padding
self.conv = nn.Conv2d(
ch_in, ch_out, kernel_size, stride, groups=g, padding=padding, bias=bias
)
self.norm = nn.BatchNorm2d(ch_out)
self.act = nn.Identity() if act is None else get_activation(act)
def forward(self, x):
return self.act(self.norm(self.conv(x)))
class SCDown(nn.Module):
def __init__(self, c1, c2, k, s):
super().__init__()
self.cv1 = ConvNormLayer_fuse(c1, c2, 1, 1)
self.cv2 = ConvNormLayer_fuse(c2, c2, k, s, c2)
def forward(self, x):
return self.cv2(self.cv1(x))
class VGGBlock(nn.Module):
def __init__(self, ch_in, ch_out, act="relu"):
super().__init__()
self.ch_in = ch_in
self.ch_out = ch_out
self.conv1 = ConvNormLayer(ch_in, ch_out, 3, 1, padding=1, act=None)
self.conv2 = ConvNormLayer(ch_in, ch_out, 1, 1, padding=0, act=None)
self.act = nn.Identity() if act is None else act
def forward(self, x):
if hasattr(self, "conv"):
y = self.conv(x)
else:
y = self.conv1(x) + self.conv2(x)
return self.act(y)
def convert_to_deploy(self):
if not hasattr(self, "conv"):
self.conv = nn.Conv2d(self.ch_in, self.ch_out, 3, 1, padding=1)
kernel, bias = self.get_equivalent_kernel_bias()
self.conv.weight.data = kernel
self.conv.bias.data = bias
self.__delattr__("conv1")
self.__delattr__("conv2")
def get_equivalent_kernel_bias(self):
kernel3x3, bias3x3 = self._fuse_bn_tensor(self.conv1)
kernel1x1, bias1x1 = self._fuse_bn_tensor(self.conv2)
return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1), bias3x3 + bias1x1
def _pad_1x1_to_3x3_tensor(self, kernel1x1):
if kernel1x1 is None:
return 0
else:
return F.pad(kernel1x1, [1, 1, 1, 1])
def _fuse_bn_tensor(self, branch: ConvNormLayer):
if branch is None:
return 0, 0
kernel = branch.conv.weight
running_mean = branch.norm.running_mean
running_var = branch.norm.running_var
gamma = branch.norm.weight
beta = branch.norm.bias
eps = branch.norm.eps
std = (running_var + eps).sqrt()
t = (gamma / std).reshape(-1, 1, 1, 1)
return kernel * t, beta - running_mean * gamma / std
class ELAN(nn.Module):
# csp-elan
def __init__(self, c1, c2, c3, c4, n=2, bias=False, act="silu", bottletype=VGGBlock):
super().__init__()
self.c = c3
self.cv1 = ConvNormLayer_fuse(c1, c3, 1, 1, bias=bias, act=act)
self.cv2 = nn.Sequential(
bottletype(c3 // 2, c4, act=get_activation(act)),
ConvNormLayer_fuse(c4, c4, 3, 1, bias=bias, act=act),
)
self.cv3 = nn.Sequential(
bottletype(c4, c4, act=get_activation(act)),
ConvNormLayer_fuse(c4, c4, 3, 1, bias=bias, act=act),
)
self.cv4 = ConvNormLayer_fuse(c3 + (2 * c4), c2, 1, 1, bias=bias, act=act)
def forward(self, x):
# y = [self.cv1(x)]
y = list(self.cv1(x).chunk(2, 1))
y.extend((m(y[-1])) for m in [self.cv2, self.cv3])
return self.cv4(torch.cat(y, 1))
class RepNCSPELAN4(nn.Module):
# csp-elan
def __init__(self, c1, c2, c3, c4, n=3, bias=False, act="silu"):
super().__init__()
self.c = c3 // 2
self.cv1 = ConvNormLayer_fuse(c1, c3, 1, 1, bias=bias, act=act)
self.cv2 = nn.Sequential(
CSPLayer(c3 // 2, c4, n, 1, bias=bias, act=act, bottletype=VGGBlock),
ConvNormLayer_fuse(c4, c4, 3, 1, bias=bias, act=act),
)
self.cv3 = nn.Sequential(
CSPLayer(c4, c4, n, 1, bias=bias, act=act, bottletype=VGGBlock),
ConvNormLayer_fuse(c4, c4, 3, 1, bias=bias, act=act),
)
self.cv4 = ConvNormLayer_fuse(c3 + (2 * c4), c2, 1, 1, bias=bias, act=act)
def forward_chunk(self, x):
y = list(self.cv1(x).chunk(2, 1))
y.extend((m(y[-1])) for m in [self.cv2, self.cv3])
return self.cv4(torch.cat(y, 1))
def forward(self, x):
y = list(self.cv1(x).split((self.c, self.c), 1))
y.extend(m(y[-1]) for m in [self.cv2, self.cv3])
return self.cv4(torch.cat(y, 1))
class CSPLayer(nn.Module):
def __init__(
self,
in_channels,
out_channels,
num_blocks=3,
expansion=1.0,
bias=False,
act="silu",
bottletype=VGGBlock,
):
super(CSPLayer, self).__init__()
hidden_channels = int(out_channels * expansion)
self.conv1 = ConvNormLayer_fuse(in_channels, hidden_channels, 1, 1, bias=bias, act=act)
self.conv2 = ConvNormLayer_fuse(in_channels, hidden_channels, 1, 1, bias=bias, act=act)
self.bottlenecks = nn.Sequential(
*[
bottletype(hidden_channels, hidden_channels, act=get_activation(act))
for _ in range(num_blocks)
]
)
if hidden_channels != out_channels:
self.conv3 = ConvNormLayer_fuse(hidden_channels, out_channels, 1, 1, bias=bias, act=act)
else:
self.conv3 = nn.Identity()
def forward(self, x):
x_1 = self.conv1(x)
x_1 = self.bottlenecks(x_1)
x_2 = self.conv2(x)
return self.conv3(x_1 + x_2)
# transformer
class TransformerEncoderLayer(nn.Module):
def __init__(
self,
d_model,
nhead,
dim_feedforward=2048,
dropout=0.1,
activation="relu",
normalize_before=False,
):
super().__init__()
self.normalize_before = normalize_before
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout, batch_first=True)
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.activation = get_activation(activation)
@staticmethod
def with_pos_embed(tensor, pos_embed):
return tensor if pos_embed is None else tensor + pos_embed
def forward(self, src, src_mask=None, pos_embed=None) -> torch.Tensor:
residual = src
if self.normalize_before:
src = self.norm1(src)
q = k = self.with_pos_embed(src, pos_embed)
src, _ = self.self_attn(q, k, value=src, attn_mask=src_mask)
src = residual + self.dropout1(src)
if not self.normalize_before:
src = self.norm1(src)
residual = src
if self.normalize_before:
src = self.norm2(src)
src = self.linear2(self.dropout(self.activation(self.linear1(src))))
src = residual + self.dropout2(src)
if not self.normalize_before:
src = self.norm2(src)
return src
class TransformerEncoder(nn.Module):
def __init__(self, encoder_layer, num_layers, norm=None):
super(TransformerEncoder, self).__init__()
self.layers = nn.ModuleList([copy.deepcopy(encoder_layer) for _ in range(num_layers)])
self.num_layers = num_layers
self.norm = norm
def forward(self, src, src_mask=None, pos_embed=None) -> torch.Tensor:
output = src
for layer in self.layers:
output = layer(output, src_mask=src_mask, pos_embed=pos_embed)
if self.norm is not None:
output = self.norm(output)
return output
@register()
class HybridEncoder(nn.Module):
__share__ = [
"eval_spatial_size",
]
def __init__(
self,
in_channels=[512, 1024, 2048],
feat_strides=[8, 16, 32],
hidden_dim=256,
nhead=8,
dim_feedforward=1024,
dropout=0.0,
enc_act="gelu",
use_encoder_idx=[2],
num_encoder_layers=1,
pe_temperature=10000,
expansion=1.0,
depth_mult=1.0,
act="silu",
eval_spatial_size=None,
):
super().__init__()
self.in_channels = in_channels
self.feat_strides = feat_strides
self.hidden_dim = hidden_dim
self.use_encoder_idx = use_encoder_idx
self.num_encoder_layers = num_encoder_layers
self.pe_temperature = pe_temperature
self.eval_spatial_size = eval_spatial_size
self.out_channels = [hidden_dim for _ in range(len(in_channels))]
self.out_strides = feat_strides
# channel projection
self.input_proj = nn.ModuleList()
for in_channel in in_channels:
proj = nn.Sequential(
OrderedDict(
[
("conv", nn.Conv2d(in_channel, hidden_dim, kernel_size=1, bias=False)),
("norm", nn.BatchNorm2d(hidden_dim)),
]
)
)
self.input_proj.append(proj)
# encoder transformer
encoder_layer = TransformerEncoderLayer(
hidden_dim,
nhead=nhead,
dim_feedforward=dim_feedforward,
dropout=dropout,
activation=enc_act,
)
self.encoder = nn.ModuleList(
[
TransformerEncoder(copy.deepcopy(encoder_layer), num_encoder_layers)
for _ in range(len(use_encoder_idx))
]
)
# top-down fpn
self.lateral_convs = nn.ModuleList()
self.fpn_blocks = nn.ModuleList()
for _ in range(len(in_channels) - 1, 0, -1):
self.lateral_convs.append(ConvNormLayer_fuse(hidden_dim, hidden_dim, 1, 1))
self.fpn_blocks.append(
RepNCSPELAN4(
hidden_dim * 2,
hidden_dim,
hidden_dim * 2,
round(expansion * hidden_dim // 2),
round(3 * depth_mult),
)
# CSPLayer(hidden_dim * 2, hidden_dim, round(3 * depth_mult), act=act, expansion=expansion, bottletype=VGGBlock)
)
# bottom-up pan
self.downsample_convs = nn.ModuleList()
self.pan_blocks = nn.ModuleList()
for _ in range(len(in_channels) - 1):
self.downsample_convs.append(
nn.Sequential(
SCDown(hidden_dim, hidden_dim, 3, 2),
)
)
self.pan_blocks.append(
RepNCSPELAN4(
hidden_dim * 2,
hidden_dim,
hidden_dim * 2,
round(expansion * hidden_dim // 2),
round(3 * depth_mult),
)
# CSPLayer(hidden_dim * 2, hidden_dim, round(3 * depth_mult), act=act, expansion=expansion, bottletype=VGGBlock)
)
self._reset_parameters()
def _reset_parameters(self):
if self.eval_spatial_size:
for idx in self.use_encoder_idx:
stride = self.feat_strides[idx]
pos_embed = self.build_2d_sincos_position_embedding(
self.eval_spatial_size[1] // stride,
self.eval_spatial_size[0] // stride,
self.hidden_dim,
self.pe_temperature,
)
setattr(self, f"pos_embed{idx}", pos_embed)
# self.register_buffer(f'pos_embed{idx}', pos_embed)
@staticmethod
def build_2d_sincos_position_embedding(w, h, embed_dim=256, temperature=10000.0):
""" """
grid_w = torch.arange(int(w), dtype=torch.float32)
grid_h = torch.arange(int(h), dtype=torch.float32)
grid_w, grid_h = torch.meshgrid(grid_w, grid_h, indexing="ij")
assert (
embed_dim % 4 == 0
), "Embed dimension must be divisible by 4 for 2D sin-cos position embedding"
pos_dim = embed_dim // 4
omega = torch.arange(pos_dim, dtype=torch.float32) / pos_dim
omega = 1.0 / (temperature**omega)
out_w = grid_w.flatten()[..., None] @ omega[None]
out_h = grid_h.flatten()[..., None] @ omega[None]
return torch.concat([out_w.sin(), out_w.cos(), out_h.sin(), out_h.cos()], dim=1)[None, :, :]
def forward(self, feats):
assert len(feats) == len(self.in_channels)
proj_feats = [self.input_proj[i](feat) for i, feat in enumerate(feats)]
# encoder
if self.num_encoder_layers > 0:
for i, enc_ind in enumerate(self.use_encoder_idx):
h, w = proj_feats[enc_ind].shape[2:]
# flatten [B, C, H, W] to [B, HxW, C]
src_flatten = proj_feats[enc_ind].flatten(2).permute(0, 2, 1)
if self.training or self.eval_spatial_size is None:
pos_embed = self.build_2d_sincos_position_embedding(
w, h, self.hidden_dim, self.pe_temperature
).to(src_flatten.device)
else:
pos_embed = getattr(self, f"pos_embed{enc_ind}", None).to(src_flatten.device)
memory: torch.Tensor = self.encoder[i](src_flatten, pos_embed=pos_embed)
proj_feats[enc_ind] = (
memory.permute(0, 2, 1).reshape(-1, self.hidden_dim, h, w).contiguous()
)
# broadcasting and fusion
inner_outs = [proj_feats[-1]]
for idx in range(len(self.in_channels) - 1, 0, -1):
feat_heigh = inner_outs[0]
feat_low = proj_feats[idx - 1]
feat_heigh = self.lateral_convs[len(self.in_channels) - 1 - idx](feat_heigh)
inner_outs[0] = feat_heigh
upsample_feat = F.interpolate(feat_heigh, scale_factor=2.0, mode="nearest")
inner_out = self.fpn_blocks[len(self.in_channels) - 1 - idx](
torch.concat([upsample_feat, feat_low], dim=1)
)
inner_outs.insert(0, inner_out)
outs = [inner_outs[0]]
for idx in range(len(self.in_channels) - 1):
feat_low = outs[-1]
feat_height = inner_outs[idx + 1]
downsample_feat = self.downsample_convs[idx](feat_low)
out = self.pan_blocks[idx](torch.concat([downsample_feat, feat_height], dim=1))
outs.append(out)
return outs
|