Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,208 Bytes
e85fecb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
"""
Copied from RT-DETR (https://github.com/lyuwenyu/RT-DETR)
Copyright(c) 2023 lyuwenyu. All Rights Reserved.
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from ...core import register
__all__ = ["DFINEPostProcessor"]
def mod(a, b):
out = a - a // b * b
return out
@register()
class DFINEPostProcessor(nn.Module):
__share__ = ["num_classes", "use_focal_loss", "num_top_queries", "remap_mscoco_category"]
def __init__(
self, num_classes=80, use_focal_loss=True, num_top_queries=300, remap_mscoco_category=False
) -> None:
super().__init__()
self.use_focal_loss = use_focal_loss
self.num_top_queries = num_top_queries
self.num_classes = int(num_classes)
self.remap_mscoco_category = remap_mscoco_category
self.deploy_mode = False
def extra_repr(self) -> str:
return f"use_focal_loss={self.use_focal_loss}, num_classes={self.num_classes}, num_top_queries={self.num_top_queries}"
# def forward(self, outputs, orig_target_sizes):
def forward(self, outputs, orig_target_sizes: torch.Tensor):
logits, boxes = outputs["pred_logits"], outputs["pred_boxes"]
# orig_target_sizes = torch.stack([t["orig_size"] for t in targets], dim=0)
bbox_pred = torchvision.ops.box_convert(boxes, in_fmt="cxcywh", out_fmt="xyxy")
bbox_pred *= orig_target_sizes.repeat(1, 2).unsqueeze(1)
if self.use_focal_loss:
scores = F.sigmoid(logits)
scores, index = torch.topk(scores.flatten(1), self.num_top_queries, dim=-1)
# TODO for older tensorrt
# labels = index % self.num_classes
labels = mod(index, self.num_classes)
index = index // self.num_classes
boxes = bbox_pred.gather(
dim=1, index=index.unsqueeze(-1).repeat(1, 1, bbox_pred.shape[-1])
)
else:
scores = F.softmax(logits)[:, :, :-1]
scores, labels = scores.max(dim=-1)
if scores.shape[1] > self.num_top_queries:
scores, index = torch.topk(scores, self.num_top_queries, dim=-1)
labels = torch.gather(labels, dim=1, index=index)
boxes = torch.gather(
boxes, dim=1, index=index.unsqueeze(-1).tile(1, 1, boxes.shape[-1])
)
# TODO for onnx export
if self.deploy_mode:
return labels, boxes, scores
# TODO
if self.remap_mscoco_category:
from ...data.dataset import mscoco_label2category
labels = (
torch.tensor([mscoco_label2category[int(x.item())] for x in labels.flatten()])
.to(boxes.device)
.reshape(labels.shape)
)
results = []
for lab, box, sco in zip(labels, boxes, scores):
result = dict(labels=lab, boxes=box, scores=sco)
results.append(result)
return results
def deploy(
self,
):
self.eval()
self.deploy_mode = True
return self
|