Spaces:
Running
on
Zero
Running
on
Zero
""" | |
Copied from RT-DETR (https://github.com/lyuwenyu/RT-DETR) | |
Copyright(c) 2023 lyuwenyu. All Rights Reserved. | |
""" | |
import random | |
from functools import partial | |
import torch | |
import torch.nn.functional as F | |
import torch.utils.data as data | |
import torchvision | |
import torchvision.transforms.v2 as VT | |
from torch.utils.data import default_collate | |
from torchvision.transforms.v2 import InterpolationMode | |
from torchvision.transforms.v2 import functional as VF | |
from ..core import register | |
torchvision.disable_beta_transforms_warning() | |
__all__ = [ | |
"DataLoader", | |
"BaseCollateFunction", | |
"BatchImageCollateFunction", | |
"batch_image_collate_fn", | |
] | |
class DataLoader(data.DataLoader): | |
__inject__ = ["dataset", "collate_fn"] | |
def __repr__(self) -> str: | |
format_string = self.__class__.__name__ + "(" | |
for n in ["dataset", "batch_size", "num_workers", "drop_last", "collate_fn"]: | |
format_string += "\n" | |
format_string += " {0}: {1}".format(n, getattr(self, n)) | |
format_string += "\n)" | |
return format_string | |
def set_epoch(self, epoch): | |
self._epoch = epoch | |
self.dataset.set_epoch(epoch) | |
self.collate_fn.set_epoch(epoch) | |
def epoch(self): | |
return self._epoch if hasattr(self, "_epoch") else -1 | |
def shuffle(self): | |
return self._shuffle | |
def shuffle(self, shuffle): | |
assert isinstance(shuffle, bool), "shuffle must be a boolean" | |
self._shuffle = shuffle | |
def batch_image_collate_fn(items): | |
"""only batch image""" | |
return torch.cat([x[0][None] for x in items], dim=0), [x[1] for x in items] | |
class BaseCollateFunction(object): | |
def set_epoch(self, epoch): | |
self._epoch = epoch | |
def epoch(self): | |
return self._epoch if hasattr(self, "_epoch") else -1 | |
def __call__(self, items): | |
raise NotImplementedError("") | |
def generate_scales(base_size, base_size_repeat): | |
scale_repeat = (base_size - int(base_size * 0.75 / 32) * 32) // 32 | |
scales = [int(base_size * 0.75 / 32) * 32 + i * 32 for i in range(scale_repeat)] | |
scales += [base_size] * base_size_repeat | |
scales += [int(base_size * 1.25 / 32) * 32 - i * 32 for i in range(scale_repeat)] | |
return scales | |
class BatchImageCollateFunction(BaseCollateFunction): | |
def __init__( | |
self, | |
stop_epoch=None, | |
ema_restart_decay=0.9999, | |
base_size=640, | |
base_size_repeat=None, | |
) -> None: | |
super().__init__() | |
self.base_size = base_size | |
self.scales = ( | |
generate_scales(base_size, base_size_repeat) if base_size_repeat is not None else None | |
) | |
self.stop_epoch = stop_epoch if stop_epoch is not None else 100000000 | |
self.ema_restart_decay = ema_restart_decay | |
# self.interpolation = interpolation | |
def __call__(self, items): | |
images = torch.cat([x[0][None] for x in items], dim=0) | |
targets = [x[1] for x in items] | |
if self.scales is not None and self.epoch < self.stop_epoch: | |
# sz = random.choice(self.scales) | |
# sz = [sz] if isinstance(sz, int) else list(sz) | |
# VF.resize(inpt, sz, interpolation=self.interpolation) | |
sz = random.choice(self.scales) | |
images = F.interpolate(images, size=sz) | |
if "masks" in targets[0]: | |
for tg in targets: | |
tg["masks"] = F.interpolate(tg["masks"], size=sz, mode="nearest") | |
raise NotImplementedError("") | |
return images, targets | |