Spaces:
Running
on
Zero
Running
on
Zero
from typing import List, Optional | |
import torch | |
# needed due to empty tensor bug in pytorch and torchvision 0.5 | |
import torchvision | |
import torchvision.transforms.functional as F | |
from packaging import version | |
from torch import Tensor | |
if version.parse(torchvision.__version__) < version.parse("0.7"): | |
from torchvision.ops import _new_empty_tensor | |
from torchvision.ops.misc import _output_size | |
def interpolate(input, size=None, scale_factor=None, mode="nearest", align_corners=None): | |
# type: (Tensor, Optional[List[int]], Optional[float], str, Optional[bool]) -> Tensor | |
""" | |
Equivalent to nn.functional.interpolate, but with support for empty batch sizes. | |
This will eventually be supported natively by PyTorch, and this | |
class can go away. | |
""" | |
if version.parse(torchvision.__version__) < version.parse("0.7"): | |
if input.numel() > 0: | |
return torch.nn.functional.interpolate(input, size, scale_factor, mode, align_corners) | |
output_shape = _output_size(2, input, size, scale_factor) | |
output_shape = list(input.shape[:-2]) + list(output_shape) | |
return _new_empty_tensor(input, output_shape) | |
else: | |
return torchvision.ops.misc.interpolate(input, size, scale_factor, mode, align_corners) | |
def crop(image, target, region): | |
cropped_image = F.crop(image, *region) | |
target = target.copy() | |
i, j, h, w = region | |
# should we do something wrt the original size? | |
target["size"] = torch.tensor([h, w]) | |
fields = ["labels", "area", "iscrowd"] | |
if "boxes" in target: | |
boxes = target["boxes"] | |
max_size = torch.as_tensor([w, h], dtype=torch.float32) | |
cropped_boxes = boxes - torch.as_tensor([j, i, j, i]) | |
cropped_boxes = torch.min(cropped_boxes.reshape(-1, 2, 2), max_size) | |
cropped_boxes = cropped_boxes.clamp(min=0) | |
area = (cropped_boxes[:, 1, :] - cropped_boxes[:, 0, :]).prod(dim=1) | |
target["boxes"] = cropped_boxes.reshape(-1, 4) | |
target["area"] = area | |
fields.append("boxes") | |
if "masks" in target: | |
# FIXME should we update the area here if there are no boxes? | |
target["masks"] = target["masks"][:, i : i + h, j : j + w] | |
fields.append("masks") | |
# remove elements for which the boxes or masks that have zero area | |
if "boxes" in target or "masks" in target: | |
# favor boxes selection when defining which elements to keep | |
# this is compatible with previous implementation | |
if "boxes" in target: | |
cropped_boxes = target["boxes"].reshape(-1, 2, 2) | |
keep = torch.all(cropped_boxes[:, 1, :] > cropped_boxes[:, 0, :], dim=1) | |
else: | |
keep = target["masks"].flatten(1).any(1) | |
for field in fields: | |
target[field] = target[field][keep] | |
return cropped_image, target | |
def hflip(image, target): | |
flipped_image = F.hflip(image) | |
w, h = image.size | |
target = target.copy() | |
if "boxes" in target: | |
boxes = target["boxes"] | |
boxes = boxes[:, [2, 1, 0, 3]] * torch.as_tensor([-1, 1, -1, 1]) + torch.as_tensor( | |
[w, 0, w, 0] | |
) | |
target["boxes"] = boxes | |
if "masks" in target: | |
target["masks"] = target["masks"].flip(-1) | |
return flipped_image, target | |
def resize(image, target, size, max_size=None): | |
# size can be min_size (scalar) or (w, h) tuple | |
def get_size_with_aspect_ratio(image_size, size, max_size=None): | |
w, h = image_size | |
if max_size is not None: | |
min_original_size = float(min((w, h))) | |
max_original_size = float(max((w, h))) | |
if max_original_size / min_original_size * size > max_size: | |
size = int(round(max_size * min_original_size / max_original_size)) | |
if (w <= h and w == size) or (h <= w and h == size): | |
return (h, w) | |
if w < h: | |
ow = size | |
oh = int(size * h / w) | |
else: | |
oh = size | |
ow = int(size * w / h) | |
# r = min(size / min(h, w), max_size / max(h, w)) | |
# ow = int(w * r) | |
# oh = int(h * r) | |
return (oh, ow) | |
def get_size(image_size, size, max_size=None): | |
if isinstance(size, (list, tuple)): | |
return size[::-1] | |
else: | |
return get_size_with_aspect_ratio(image_size, size, max_size) | |
size = get_size(image.size, size, max_size) | |
rescaled_image = F.resize(image, size) | |
if target is None: | |
return rescaled_image, None | |
ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(rescaled_image.size, image.size)) | |
ratio_width, ratio_height = ratios | |
target = target.copy() | |
if "boxes" in target: | |
boxes = target["boxes"] | |
scaled_boxes = boxes * torch.as_tensor( | |
[ratio_width, ratio_height, ratio_width, ratio_height] | |
) | |
target["boxes"] = scaled_boxes | |
if "area" in target: | |
area = target["area"] | |
scaled_area = area * (ratio_width * ratio_height) | |
target["area"] = scaled_area | |
h, w = size | |
target["size"] = torch.tensor([h, w]) | |
if "masks" in target: | |
target["masks"] = ( | |
interpolate(target["masks"][:, None].float(), size, mode="nearest")[:, 0] > 0.5 | |
) | |
return rescaled_image, target | |
def pad(image, target, padding): | |
# assumes that we only pad on the bottom right corners | |
padded_image = F.pad(image, (0, 0, padding[0], padding[1])) | |
if target is None: | |
return padded_image, None | |
target = target.copy() | |
# should we do something wrt the original size? | |
target["size"] = torch.tensor(padded_image.size[::-1]) | |
if "masks" in target: | |
target["masks"] = torch.nn.functional.pad(target["masks"], (0, padding[0], 0, padding[1])) | |
return padded_image, target | |