Spaces:
Running
on
Zero
Running
on
Zero
""" | |
Copied from RT-DETR (https://github.com/lyuwenyu/RT-DETR) | |
Copyright(c) 2023 lyuwenyu. All Rights Reserved. | |
""" | |
import random | |
import torch | |
import torchvision | |
import torchvision.transforms.v2 as T | |
import torchvision.transforms.v2.functional as F | |
from PIL import Image | |
from ...core import register | |
from .._misc import convert_to_tv_tensor | |
torchvision.disable_beta_transforms_warning() | |
class Mosaic(T.Transform): | |
def __init__( | |
self, | |
size, | |
max_size=None, | |
) -> None: | |
super().__init__() | |
self.resize = T.Resize(size=size, max_size=max_size) | |
self.crop = T.RandomCrop(size=max_size if max_size else size) | |
# TODO add arg `output_size` for affine` | |
# self.random_perspective = T.RandomPerspective(distortion_scale=0.5, p=1., ) | |
self.random_affine = T.RandomAffine( | |
degrees=0, translate=(0.1, 0.1), scale=(0.5, 1.5), fill=114 | |
) | |
def forward(self, *inputs): | |
inputs = inputs if len(inputs) > 1 else inputs[0] | |
image, target, dataset = inputs | |
images = [] | |
targets = [] | |
indices = random.choices(range(len(dataset)), k=3) | |
for i in indices: | |
image, target = dataset.load_item(i) | |
image, target = self.resize(image, target) | |
images.append(image) | |
targets.append(target) | |
h, w = F.get_spatial_size(images[0]) | |
offset = [[0, 0], [w, 0], [0, h], [w, h]] | |
image = Image.new(mode=images[0].mode, size=(w * 2, h * 2), color=0) | |
for i, im in enumerate(images): | |
image.paste(im, offset[i]) | |
offset = torch.tensor([[0, 0], [w, 0], [0, h], [w, h]]).repeat(1, 2) | |
target = {} | |
for k in targets[0]: | |
if k == "boxes": | |
v = [t[k] + offset[i] for i, t in enumerate(targets)] | |
else: | |
v = [t[k] for t in targets] | |
if isinstance(v[0], torch.Tensor): | |
v = torch.cat(v, dim=0) | |
target[k] = v | |
if "boxes" in target: | |
# target['boxes'] = target['boxes'].clamp(0, 640 * 2 - 1) | |
w, h = image.size | |
target["boxes"] = convert_to_tv_tensor( | |
target["boxes"], "boxes", box_format="xyxy", spatial_size=[h, w] | |
) | |
if "masks" in target: | |
target["masks"] = convert_to_tv_tensor(target["masks"], "masks") | |
image, target = self.random_affine(image, target) | |
# image, target = self.resize(image, target) | |
image, target = self.crop(image, target) | |
return image, target, dataset | |