Spaces:
Running
on
Zero
Running
on
Zero
""" | |
D-FINE: Redefine Regression Task of DETRs as Fine-grained Distribution Refinement | |
Copyright (c) 2024 The D-FINE Authors. All Rights Reserved. | |
--------------------------------------------------------------------------------- | |
Modified from RT-DETR (https://github.com/lyuwenyu/RT-DETR) | |
Copyright (c) 2023 lyuwenyu. All Rights Reserved. | |
""" | |
import math | |
from typing import List | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
def inverse_sigmoid(x: torch.Tensor, eps: float = 1e-5) -> torch.Tensor: | |
x = x.clip(min=0.0, max=1.0) | |
return torch.log(x.clip(min=eps) / (1 - x).clip(min=eps)) | |
def bias_init_with_prob(prior_prob=0.01): | |
"""initialize conv/fc bias value according to a given probability value.""" | |
bias_init = float(-math.log((1 - prior_prob) / prior_prob)) | |
return bias_init | |
def deformable_attention_core_func( | |
value, value_spatial_shapes, sampling_locations, attention_weights | |
): | |
""" | |
Args: | |
value (Tensor): [bs, value_length, n_head, c] | |
value_spatial_shapes (Tensor|List): [n_levels, 2] | |
value_level_start_index (Tensor|List): [n_levels] | |
sampling_locations (Tensor): [bs, query_length, n_head, n_levels, n_points, 2] | |
attention_weights (Tensor): [bs, query_length, n_head, n_levels, n_points] | |
Returns: | |
output (Tensor): [bs, Length_{query}, C] | |
""" | |
bs, _, n_head, c = value.shape | |
_, Len_q, _, n_levels, n_points, _ = sampling_locations.shape | |
split_shape = [h * w for h, w in value_spatial_shapes] | |
value_list = value.split(split_shape, dim=1) | |
sampling_grids = 2 * sampling_locations - 1 | |
sampling_value_list = [] | |
for level, (h, w) in enumerate(value_spatial_shapes): | |
# N_, H_*W_, M_, D_ -> N_, H_*W_, M_*D_ -> N_, M_*D_, H_*W_ -> N_*M_, D_, H_, W_ | |
value_l_ = value_list[level].flatten(2).permute(0, 2, 1).reshape(bs * n_head, c, h, w) | |
# N_, Lq_, M_, P_, 2 -> N_, M_, Lq_, P_, 2 -> N_*M_, Lq_, P_, 2 | |
sampling_grid_l_ = sampling_grids[:, :, :, level].permute(0, 2, 1, 3, 4).flatten(0, 1) | |
# N_*M_, D_, Lq_, P_ | |
sampling_value_l_ = F.grid_sample( | |
value_l_, sampling_grid_l_, mode="bilinear", padding_mode="zeros", align_corners=False | |
) | |
sampling_value_list.append(sampling_value_l_) | |
# (N_, Lq_, M_, L_, P_) -> (N_, M_, Lq_, L_, P_) -> (N_*M_, 1, Lq_, L_*P_) | |
attention_weights = attention_weights.permute(0, 2, 1, 3, 4).reshape( | |
bs * n_head, 1, Len_q, n_levels * n_points | |
) | |
output = ( | |
(torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights) | |
.sum(-1) | |
.reshape(bs, n_head * c, Len_q) | |
) | |
return output.permute(0, 2, 1) | |
def deformable_attention_core_func_v2( | |
value: torch.Tensor, | |
value_spatial_shapes, | |
sampling_locations: torch.Tensor, | |
attention_weights: torch.Tensor, | |
num_points_list: List[int], | |
method="default", | |
): | |
""" | |
Args: | |
value (Tensor): [bs, value_length, n_head, c] | |
value_spatial_shapes (Tensor|List): [n_levels, 2] | |
value_level_start_index (Tensor|List): [n_levels] | |
sampling_locations (Tensor): [bs, query_length, n_head, n_levels * n_points, 2] | |
attention_weights (Tensor): [bs, query_length, n_head, n_levels * n_points] | |
Returns: | |
output (Tensor): [bs, Length_{query}, C] | |
""" | |
bs, n_head, c, _ = value[0].shape | |
_, Len_q, _, _, _ = sampling_locations.shape | |
# sampling_offsets [8, 480, 8, 12, 2] | |
if method == "default": | |
sampling_grids = 2 * sampling_locations - 1 | |
elif method == "discrete": | |
sampling_grids = sampling_locations | |
sampling_grids = sampling_grids.permute(0, 2, 1, 3, 4).flatten(0, 1) | |
sampling_locations_list = sampling_grids.split(num_points_list, dim=-2) | |
sampling_value_list = [] | |
for level, (h, w) in enumerate(value_spatial_shapes): | |
value_l = value[level].reshape(bs * n_head, c, h, w) | |
sampling_grid_l: torch.Tensor = sampling_locations_list[level] | |
if method == "default": | |
sampling_value_l = F.grid_sample( | |
value_l, sampling_grid_l, mode="bilinear", padding_mode="zeros", align_corners=False | |
) | |
elif method == "discrete": | |
# n * m, seq, n, 2 | |
sampling_coord = ( | |
sampling_grid_l * torch.tensor([[w, h]], device=value_l.device) + 0.5 | |
).to(torch.int64) | |
# FIX ME? for rectangle input | |
sampling_coord = sampling_coord.clamp(0, h - 1) | |
sampling_coord = sampling_coord.reshape(bs * n_head, Len_q * num_points_list[level], 2) | |
s_idx = ( | |
torch.arange(sampling_coord.shape[0], device=value_l.device) | |
.unsqueeze(-1) | |
.repeat(1, sampling_coord.shape[1]) | |
) | |
sampling_value_l: torch.Tensor = value_l[ | |
s_idx, :, sampling_coord[..., 1], sampling_coord[..., 0] | |
] # n l c | |
sampling_value_l = sampling_value_l.permute(0, 2, 1).reshape( | |
bs * n_head, c, Len_q, num_points_list[level] | |
) | |
sampling_value_list.append(sampling_value_l) | |
attn_weights = attention_weights.permute(0, 2, 1, 3).reshape( | |
bs * n_head, 1, Len_q, sum(num_points_list) | |
) | |
weighted_sample_locs = torch.concat(sampling_value_list, dim=-1) * attn_weights | |
output = weighted_sample_locs.sum(-1).reshape(bs, n_head * c, Len_q) | |
return output.permute(0, 2, 1) | |
def get_activation(act: str, inpace: bool = True): | |
"""get activation""" | |
if act is None: | |
return nn.Identity() | |
elif isinstance(act, nn.Module): | |
return act | |
act = act.lower() | |
if act == "silu" or act == "swish": | |
m = nn.SiLU() | |
elif act == "relu": | |
m = nn.ReLU() | |
elif act == "leaky_relu": | |
m = nn.LeakyReLU() | |
elif act == "silu": | |
m = nn.SiLU() | |
elif act == "gelu": | |
m = nn.GELU() | |
elif act == "hardsigmoid": | |
m = nn.Hardsigmoid() | |
else: | |
raise RuntimeError("") | |
if hasattr(m, "inplace"): | |
m.inplace = inpace | |
return m | |