""" Copied from RT-DETR (https://github.com/lyuwenyu/RT-DETR) Copyright(c) 2023 lyuwenyu. All Rights Reserved. """ import math import warnings import torch import torch.nn as nn import torch.nn.functional as F from ...core import register from .common import get_activation def autopad(k, p=None): if p is None: p = k // 2 if isinstance(k, int) else [x // 2 for x in k] return p def make_divisible(c, d): return math.ceil(c / d) * d class Conv(nn.Module): def __init__(self, cin, cout, k=1, s=1, p=None, g=1, act="silu") -> None: super().__init__() self.conv = nn.Conv2d(cin, cout, k, s, autopad(k, p), groups=g, bias=False) self.bn = nn.BatchNorm2d(cout) self.act = get_activation(act, inplace=True) def forward(self, x): return self.act(self.bn(self.conv(x))) class Bottleneck(nn.Module): # Standard bottleneck def __init__(self, c1, c2, shortcut=True, g=1, e=0.5, act="silu"): super().__init__() c_ = int(c2 * e) # hidden channels self.cv1 = Conv(c1, c_, 1, 1, act=act) self.cv2 = Conv(c_, c2, 3, 1, g=g, act=act) self.add = shortcut and c1 == c2 def forward(self, x): return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x)) class C3(nn.Module): # CSP Bottleneck with 3 convolutions def __init__( self, c1, c2, n=1, shortcut=True, g=1, e=0.5, act="silu" ): # ch_in, ch_out, number, shortcut, groups, expansion super().__init__() c_ = int(c2 * e) # hidden channels self.cv1 = Conv(c1, c_, 1, 1, act=act) self.cv2 = Conv(c1, c_, 1, 1, act=act) self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0, act=act) for _ in range(n))) self.cv3 = Conv(2 * c_, c2, 1, act=act) def forward(self, x): return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1)) class SPPF(nn.Module): # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher def __init__(self, c1, c2, k=5, act="silu"): # equivalent to SPP(k=(5, 9, 13)) super().__init__() c_ = c1 // 2 # hidden channels self.cv1 = Conv(c1, c_, 1, 1, act=act) self.cv2 = Conv(c_ * 4, c2, 1, 1, act=act) self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2) def forward(self, x): x = self.cv1(x) with warnings.catch_warnings(): warnings.simplefilter("ignore") # suppress torch 1.9.0 max_pool2d() warning y1 = self.m(x) y2 = self.m(y1) return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1)) @register() class CSPDarkNet(nn.Module): __share__ = ["depth_multi", "width_multi"] def __init__( self, in_channels=3, width_multi=1.0, depth_multi=1.0, return_idx=[2, 3, -1], act="silu", ) -> None: super().__init__() channels = [64, 128, 256, 512, 1024] channels = [make_divisible(c * width_multi, 8) for c in channels] depths = [3, 6, 9, 3] depths = [max(round(d * depth_multi), 1) for d in depths] self.layers = nn.ModuleList([Conv(in_channels, channels[0], 6, 2, 2, act=act)]) for i, (c, d) in enumerate(zip(channels, depths), 1): layer = nn.Sequential( *[Conv(c, channels[i], 3, 2, act=act), C3(channels[i], channels[i], n=d, act=act)] ) self.layers.append(layer) self.layers.append(SPPF(channels[-1], channels[-1], k=5, act=act)) self.return_idx = return_idx self.out_channels = [channels[i] for i in self.return_idx] self.strides = [[2, 4, 8, 16, 32][i] for i in self.return_idx] self.depths = depths self.act = act def forward(self, x): outputs = [] for _, m in enumerate(self.layers): x = m(x) outputs.append(x) return [outputs[i] for i in self.return_idx] @register() class CSPPAN(nn.Module): """ P5 ---> 1x1 ---------------------------------> concat --> c3 --> det | up | conv /2 P4 ---> concat ---> c3 ---> 1x1 --> concat ---> c3 -----------> det | up | conv /2 P3 -----------------------> concat ---> c3 ---------------------> det """ __share__ = [ "depth_multi", ] def __init__(self, in_channels=[256, 512, 1024], depth_multi=1.0, act="silu") -> None: super().__init__() depth = max(round(3 * depth_multi), 1) self.out_channels = in_channels self.fpn_stems = nn.ModuleList( [ Conv(cin, cout, 1, 1, act=act) for cin, cout in zip(in_channels[::-1], in_channels[::-1][1:]) ] ) self.fpn_csps = nn.ModuleList( [ C3(cin, cout, depth, False, act=act) for cin, cout in zip(in_channels[::-1], in_channels[::-1][1:]) ] ) self.pan_stems = nn.ModuleList([Conv(c, c, 3, 2, act=act) for c in in_channels[:-1]]) self.pan_csps = nn.ModuleList([C3(c, c, depth, False, act=act) for c in in_channels[1:]]) def forward(self, feats): fpn_feats = [] for i, feat in enumerate(feats[::-1]): if i == 0: feat = self.fpn_stems[i](feat) fpn_feats.append(feat) else: _feat = F.interpolate(fpn_feats[-1], scale_factor=2, mode="nearest") feat = torch.concat([_feat, feat], dim=1) feat = self.fpn_csps[i - 1](feat) if i < len(self.fpn_stems): feat = self.fpn_stems[i](feat) fpn_feats.append(feat) pan_feats = [] for i, feat in enumerate(fpn_feats[::-1]): if i == 0: pan_feats.append(feat) else: _feat = self.pan_stems[i - 1](pan_feats[-1]) feat = torch.concat([_feat, feat], dim=1) feat = self.pan_csps[i - 1](feat) pan_feats.append(feat) return pan_feats if __name__ == "__main__": data = torch.rand(1, 3, 320, 640) width_multi = 0.75 depth_multi = 0.33 m = CSPDarkNet(3, width_multi=width_multi, depth_multi=depth_multi, act="silu") outputs = m(data) print([o.shape for o in outputs]) m = CSPPAN(in_channels=m.out_channels, depth_multi=depth_multi, act="silu") outputs = m(outputs) print([o.shape for o in outputs])