Spaces:
Runtime error
Runtime error
File size: 7,674 Bytes
492d521 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
import os
import glob
import pandas as pd
import numpy as np
import gradio as gr
from ta.momentum import RSIIndicator
from ta.trend import MACD, SMAIndicator
from ta.volatility import BollingerBands
import lightgbm as lgb
# ==============================
# CONFIG
# ==============================
DATA_FOLDER = r"D:\Internship_Project\Crypto_Data_Tracker"
# ==============================
# LOAD & PREPARE DATA
# ==============================
def load_crypto_data():
csv_files = glob.glob(os.path.join(DATA_FOLDER, "*.csv"))
all_data = []
for file in csv_files:
coin_name = os.path.basename(file).replace('.csv', '')
temp_df = pd.read_csv(file)
temp_df['Coin'] = coin_name
all_data.append(temp_df)
df = pd.concat(all_data, ignore_index=True)
# Detect date and price columns
date_col = next((c for c in df.columns if 'date' in c.lower()), None)
price_col = next((c for c in df.columns if 'close' in c.lower()), None)
coin_col = 'Coin'
df[date_col] = pd.to_datetime(df[date_col], errors='coerce')
df = df.dropna(subset=[date_col])
# Add technical indicators
def add_indicators(g):
g = g.sort_values(by=date_col).copy()
g['Daily_Return'] = g[price_col].pct_change()
g['SMA_20'] = SMAIndicator(g[price_col], window=20).sma_indicator()
g['RSI'] = RSIIndicator(g[price_col], window=14).rsi()
macd = MACD(g[price_col])
g['MACD'] = macd.macd()
g['MACD_Signal'] = macd.macd_signal()
return g
df = df.groupby(coin_col, group_keys=False).apply(add_indicators)
return df, price_col, date_col, coin_col
# ==============================
# SIMPLE CRYPTO PREDICTOR
# ==============================
class SimpleCryptoPredictor:
def __init__(self, df, price_col, date_col, coin_col):
self.df = df.copy()
self.price_col = price_col
self.date_col = date_col
self.coin_col = coin_col
self.model = None
self.available_coins = []
self.feature_columns = []
def initialize(self):
coin_counts = self.df[self.coin_col].value_counts()
self.available_coins = coin_counts[coin_counts >= 50].index.tolist()
self._train_model()
def _train_model(self):
features_list = []
for coin in self.available_coins[:20]:
coin_data = self.df[self.df[self.coin_col] == coin].copy()
if len(coin_data) < 100:
continue
features_df = self._create_features(coin_data, include_target=True)
if len(features_df) > 0:
features_list.append(features_df)
all_features = pd.concat(features_list, ignore_index=True)
feature_cols = ['return_1d', 'return_3d', 'return_7d', 'rsi_norm',
'vol_7d', 'sma_signal', 'return_lag1', 'vol_lag1']
available_cols = [c for c in feature_cols if c in all_features.columns]
X = all_features[available_cols].copy()
y = all_features['target_return'].copy()
mask = ~(X.isna().any(axis=1) | y.isna())
X = X[mask]
y = y[mask]
self.model = lgb.LGBMRegressor(n_estimators=100, max_depth=6, learning_rate=0.1, random_state=42)
self.model.fit(X, y)
self.feature_columns = available_cols
def _create_features(self, coin_data, include_target=False):
coin_data = coin_data.sort_values(self.date_col).copy()
if len(coin_data) < 30:
return pd.DataFrame()
coin_data['return_1d'] = coin_data[self.price_col].pct_change(1) * 100
coin_data['return_3d'] = coin_data[self.price_col].pct_change(3) * 100
coin_data['return_7d'] = coin_data[self.price_col].pct_change(7) * 100
coin_data['rsi_norm'] = (coin_data['RSI'] - 50) / 50
coin_data['vol_7d'] = coin_data['return_1d'].rolling(7).std()
coin_data['sma_20'] = coin_data[self.price_col].rolling(20).mean()
coin_data['sma_signal'] = np.where(coin_data[self.price_col] > coin_data['sma_20'], 1, -1)
coin_data['return_lag1'] = coin_data['return_1d'].shift(1)
coin_data['vol_lag1'] = coin_data['vol_7d'].shift(1)
if include_target:
coin_data['price_future'] = coin_data[self.price_col].shift(-1)
coin_data['target_return'] = ((coin_data['price_future'] - coin_data[self.price_col]) / coin_data[self.price_col] * 100)
coin_data = coin_data.replace([np.inf, -np.inf], np.nan)
return coin_data
def predict_coin(self, coin_name):
if coin_name not in self.available_coins:
return f"Coin '{coin_name}' not found."
coin_data = self.df[self.df[self.coin_col] == coin_name].copy()
features_df = self._create_features(coin_data)
latest = features_df.iloc[-1]
feature_values = [latest.get(c, 0) for c in self.feature_columns]
pred_return = self.model.predict([feature_values])[0]
price = latest.get(self.price_col, 0)
if pred_return > 3:
rec = "STRONG BUY π’"
elif pred_return > 1:
rec = "BUY π’"
elif pred_return > -1:
rec = "HOLD π‘"
elif pred_return > -3:
rec = "SELL π΄"
else:
rec = "STRONG SELL π΄"
return f"{coin_name}: Price=${price:.4f}, Predicted Return={pred_return:+.2f}%, Recommendation={rec}"
def find_opportunities(self, top_n=10):
predictions = []
for coin in self.available_coins:
coin_data = self.df[self.df[self.coin_col] == coin].copy()
features_df = self._create_features(coin_data)
if len(features_df) == 0:
continue
latest = features_df.iloc[-1]
feature_values = [latest.get(c, 0) for c in self.feature_columns]
pred_return = self.model.predict([feature_values])[0]
predictions.append((coin, latest.get(self.price_col, 0), pred_return))
predictions.sort(key=lambda x: x[2], reverse=True)
return pd.DataFrame(predictions[:top_n], columns=['Coin', 'Price', 'Predicted Return %'])
# ==============================
# INIT
# ==============================
df, price_col, date_col, coin_col = load_crypto_data()
predictor = SimpleCryptoPredictor(df, price_col, date_col, coin_col)
predictor.initialize()
# ==============================
# GRADIO APP
# ==============================
def predict_single(coin):
return predictor.predict_coin(coin)
def top_opportunities(n):
df_top = predictor.find_opportunities(int(n))
return df_top
coin_dropdown = gr.Dropdown(choices=predictor.available_coins, label="Select Coin")
top_n_slider = gr.Slider(1, 20, value=10, step=1, label="Top N Opportunities")
with gr.Blocks() as demo:
gr.Markdown("## π Crypto Prediction Dashboard")
with gr.Row():
with gr.Column():
gr.Markdown("### Single Coin Prediction")
coin_input = gr.Dropdown(choices=predictor.available_coins, label="Select Coin")
predict_btn = gr.Button("Predict")
prediction_output = gr.Textbox(label="Prediction Result")
with gr.Column():
gr.Markdown("### Top Opportunities")
top_n_input = gr.Slider(1, 20, value=10, step=1, label="Top N Opportunities")
top_btn = gr.Button("Find Opportunities")
table_output = gr.Dataframe(headers=["Coin", "Price", "Predicted Return %"])
predict_btn.click(predict_single, inputs=coin_input, outputs=prediction_output)
top_btn.click(top_opportunities, inputs=top_n_input, outputs=table_output)
if __name__ == "__main__":
demo.launch()
|