File size: 7,674 Bytes
492d521
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

import os
import glob
import pandas as pd
import numpy as np
import gradio as gr
from ta.momentum import RSIIndicator
from ta.trend import MACD, SMAIndicator
from ta.volatility import BollingerBands
import lightgbm as lgb

# ==============================
# CONFIG
# ==============================
DATA_FOLDER = r"D:\Internship_Project\Crypto_Data_Tracker"

# ==============================
# LOAD & PREPARE DATA
# ==============================
def load_crypto_data():
    csv_files = glob.glob(os.path.join(DATA_FOLDER, "*.csv"))
    all_data = []
    for file in csv_files:
        coin_name = os.path.basename(file).replace('.csv', '')
        temp_df = pd.read_csv(file)
        temp_df['Coin'] = coin_name
        all_data.append(temp_df)

    df = pd.concat(all_data, ignore_index=True)

    # Detect date and price columns
    date_col = next((c for c in df.columns if 'date' in c.lower()), None)
    price_col = next((c for c in df.columns if 'close' in c.lower()), None)
    coin_col = 'Coin'

    df[date_col] = pd.to_datetime(df[date_col], errors='coerce')
    df = df.dropna(subset=[date_col])

    # Add technical indicators
    def add_indicators(g):
        g = g.sort_values(by=date_col).copy()
        g['Daily_Return'] = g[price_col].pct_change()
        g['SMA_20'] = SMAIndicator(g[price_col], window=20).sma_indicator()
        g['RSI'] = RSIIndicator(g[price_col], window=14).rsi()
        macd = MACD(g[price_col])
        g['MACD'] = macd.macd()
        g['MACD_Signal'] = macd.macd_signal()
        return g

    df = df.groupby(coin_col, group_keys=False).apply(add_indicators)

    return df, price_col, date_col, coin_col


# ==============================
# SIMPLE CRYPTO PREDICTOR
# ==============================
class SimpleCryptoPredictor:
    def __init__(self, df, price_col, date_col, coin_col):
        self.df = df.copy()
        self.price_col = price_col
        self.date_col = date_col
        self.coin_col = coin_col
        self.model = None
        self.available_coins = []
        self.feature_columns = []

    def initialize(self):
        coin_counts = self.df[self.coin_col].value_counts()
        self.available_coins = coin_counts[coin_counts >= 50].index.tolist()
        self._train_model()

    def _train_model(self):
        features_list = []
        for coin in self.available_coins[:20]:
            coin_data = self.df[self.df[self.coin_col] == coin].copy()
            if len(coin_data) < 100:
                continue
            features_df = self._create_features(coin_data, include_target=True)
            if len(features_df) > 0:
                features_list.append(features_df)

        all_features = pd.concat(features_list, ignore_index=True)
        feature_cols = ['return_1d', 'return_3d', 'return_7d', 'rsi_norm',
                        'vol_7d', 'sma_signal', 'return_lag1', 'vol_lag1']
        available_cols = [c for c in feature_cols if c in all_features.columns]
        X = all_features[available_cols].copy()
        y = all_features['target_return'].copy()
        mask = ~(X.isna().any(axis=1) | y.isna())
        X = X[mask]
        y = y[mask]

        self.model = lgb.LGBMRegressor(n_estimators=100, max_depth=6, learning_rate=0.1, random_state=42)
        self.model.fit(X, y)
        self.feature_columns = available_cols

    def _create_features(self, coin_data, include_target=False):
        coin_data = coin_data.sort_values(self.date_col).copy()
        if len(coin_data) < 30:
            return pd.DataFrame()
        coin_data['return_1d'] = coin_data[self.price_col].pct_change(1) * 100
        coin_data['return_3d'] = coin_data[self.price_col].pct_change(3) * 100
        coin_data['return_7d'] = coin_data[self.price_col].pct_change(7) * 100
        coin_data['rsi_norm'] = (coin_data['RSI'] - 50) / 50
        coin_data['vol_7d'] = coin_data['return_1d'].rolling(7).std()
        coin_data['sma_20'] = coin_data[self.price_col].rolling(20).mean()
        coin_data['sma_signal'] = np.where(coin_data[self.price_col] > coin_data['sma_20'], 1, -1)
        coin_data['return_lag1'] = coin_data['return_1d'].shift(1)
        coin_data['vol_lag1'] = coin_data['vol_7d'].shift(1)
        if include_target:
            coin_data['price_future'] = coin_data[self.price_col].shift(-1)
            coin_data['target_return'] = ((coin_data['price_future'] - coin_data[self.price_col]) / coin_data[self.price_col] * 100)
        coin_data = coin_data.replace([np.inf, -np.inf], np.nan)
        return coin_data

    def predict_coin(self, coin_name):
        if coin_name not in self.available_coins:
            return f"Coin '{coin_name}' not found."
        coin_data = self.df[self.df[self.coin_col] == coin_name].copy()
        features_df = self._create_features(coin_data)
        latest = features_df.iloc[-1]
        feature_values = [latest.get(c, 0) for c in self.feature_columns]
        pred_return = self.model.predict([feature_values])[0]
        price = latest.get(self.price_col, 0)
        if pred_return > 3:
            rec = "STRONG BUY 🟒"
        elif pred_return > 1:
            rec = "BUY 🟒"
        elif pred_return > -1:
            rec = "HOLD 🟑"
        elif pred_return > -3:
            rec = "SELL πŸ”΄"
        else:
            rec = "STRONG SELL πŸ”΄"
        return f"{coin_name}: Price=${price:.4f}, Predicted Return={pred_return:+.2f}%, Recommendation={rec}"

    def find_opportunities(self, top_n=10):
        predictions = []
        for coin in self.available_coins:
            coin_data = self.df[self.df[self.coin_col] == coin].copy()
            features_df = self._create_features(coin_data)
            if len(features_df) == 0:
                continue
            latest = features_df.iloc[-1]
            feature_values = [latest.get(c, 0) for c in self.feature_columns]
            pred_return = self.model.predict([feature_values])[0]
            predictions.append((coin, latest.get(self.price_col, 0), pred_return))
        predictions.sort(key=lambda x: x[2], reverse=True)
        return pd.DataFrame(predictions[:top_n], columns=['Coin', 'Price', 'Predicted Return %'])


# ==============================
# INIT
# ==============================
df, price_col, date_col, coin_col = load_crypto_data()
predictor = SimpleCryptoPredictor(df, price_col, date_col, coin_col)
predictor.initialize()


# ==============================
# GRADIO APP
# ==============================
def predict_single(coin):
    return predictor.predict_coin(coin)

def top_opportunities(n):
    df_top = predictor.find_opportunities(int(n))
    return df_top

coin_dropdown = gr.Dropdown(choices=predictor.available_coins, label="Select Coin")
top_n_slider = gr.Slider(1, 20, value=10, step=1, label="Top N Opportunities")

with gr.Blocks() as demo:
    gr.Markdown("## πŸ“ˆ Crypto Prediction Dashboard")
    with gr.Row():
        with gr.Column():
            gr.Markdown("### Single Coin Prediction")
            coin_input = gr.Dropdown(choices=predictor.available_coins, label="Select Coin")
            predict_btn = gr.Button("Predict")
            prediction_output = gr.Textbox(label="Prediction Result")
        with gr.Column():
            gr.Markdown("### Top Opportunities")
            top_n_input = gr.Slider(1, 20, value=10, step=1, label="Top N Opportunities")
            top_btn = gr.Button("Find Opportunities")
            table_output = gr.Dataframe(headers=["Coin", "Price", "Predicted Return %"])

    predict_btn.click(predict_single, inputs=coin_input, outputs=prediction_output)
    top_btn.click(top_opportunities, inputs=top_n_input, outputs=table_output)

if __name__ == "__main__":
    demo.launch()