developer28's picture
app.py
492d521 verified
raw
history blame
7.67 kB
import os
import glob
import pandas as pd
import numpy as np
import gradio as gr
from ta.momentum import RSIIndicator
from ta.trend import MACD, SMAIndicator
from ta.volatility import BollingerBands
import lightgbm as lgb
# ==============================
# CONFIG
# ==============================
DATA_FOLDER = r"D:\Internship_Project\Crypto_Data_Tracker"
# ==============================
# LOAD & PREPARE DATA
# ==============================
def load_crypto_data():
csv_files = glob.glob(os.path.join(DATA_FOLDER, "*.csv"))
all_data = []
for file in csv_files:
coin_name = os.path.basename(file).replace('.csv', '')
temp_df = pd.read_csv(file)
temp_df['Coin'] = coin_name
all_data.append(temp_df)
df = pd.concat(all_data, ignore_index=True)
# Detect date and price columns
date_col = next((c for c in df.columns if 'date' in c.lower()), None)
price_col = next((c for c in df.columns if 'close' in c.lower()), None)
coin_col = 'Coin'
df[date_col] = pd.to_datetime(df[date_col], errors='coerce')
df = df.dropna(subset=[date_col])
# Add technical indicators
def add_indicators(g):
g = g.sort_values(by=date_col).copy()
g['Daily_Return'] = g[price_col].pct_change()
g['SMA_20'] = SMAIndicator(g[price_col], window=20).sma_indicator()
g['RSI'] = RSIIndicator(g[price_col], window=14).rsi()
macd = MACD(g[price_col])
g['MACD'] = macd.macd()
g['MACD_Signal'] = macd.macd_signal()
return g
df = df.groupby(coin_col, group_keys=False).apply(add_indicators)
return df, price_col, date_col, coin_col
# ==============================
# SIMPLE CRYPTO PREDICTOR
# ==============================
class SimpleCryptoPredictor:
def __init__(self, df, price_col, date_col, coin_col):
self.df = df.copy()
self.price_col = price_col
self.date_col = date_col
self.coin_col = coin_col
self.model = None
self.available_coins = []
self.feature_columns = []
def initialize(self):
coin_counts = self.df[self.coin_col].value_counts()
self.available_coins = coin_counts[coin_counts >= 50].index.tolist()
self._train_model()
def _train_model(self):
features_list = []
for coin in self.available_coins[:20]:
coin_data = self.df[self.df[self.coin_col] == coin].copy()
if len(coin_data) < 100:
continue
features_df = self._create_features(coin_data, include_target=True)
if len(features_df) > 0:
features_list.append(features_df)
all_features = pd.concat(features_list, ignore_index=True)
feature_cols = ['return_1d', 'return_3d', 'return_7d', 'rsi_norm',
'vol_7d', 'sma_signal', 'return_lag1', 'vol_lag1']
available_cols = [c for c in feature_cols if c in all_features.columns]
X = all_features[available_cols].copy()
y = all_features['target_return'].copy()
mask = ~(X.isna().any(axis=1) | y.isna())
X = X[mask]
y = y[mask]
self.model = lgb.LGBMRegressor(n_estimators=100, max_depth=6, learning_rate=0.1, random_state=42)
self.model.fit(X, y)
self.feature_columns = available_cols
def _create_features(self, coin_data, include_target=False):
coin_data = coin_data.sort_values(self.date_col).copy()
if len(coin_data) < 30:
return pd.DataFrame()
coin_data['return_1d'] = coin_data[self.price_col].pct_change(1) * 100
coin_data['return_3d'] = coin_data[self.price_col].pct_change(3) * 100
coin_data['return_7d'] = coin_data[self.price_col].pct_change(7) * 100
coin_data['rsi_norm'] = (coin_data['RSI'] - 50) / 50
coin_data['vol_7d'] = coin_data['return_1d'].rolling(7).std()
coin_data['sma_20'] = coin_data[self.price_col].rolling(20).mean()
coin_data['sma_signal'] = np.where(coin_data[self.price_col] > coin_data['sma_20'], 1, -1)
coin_data['return_lag1'] = coin_data['return_1d'].shift(1)
coin_data['vol_lag1'] = coin_data['vol_7d'].shift(1)
if include_target:
coin_data['price_future'] = coin_data[self.price_col].shift(-1)
coin_data['target_return'] = ((coin_data['price_future'] - coin_data[self.price_col]) / coin_data[self.price_col] * 100)
coin_data = coin_data.replace([np.inf, -np.inf], np.nan)
return coin_data
def predict_coin(self, coin_name):
if coin_name not in self.available_coins:
return f"Coin '{coin_name}' not found."
coin_data = self.df[self.df[self.coin_col] == coin_name].copy()
features_df = self._create_features(coin_data)
latest = features_df.iloc[-1]
feature_values = [latest.get(c, 0) for c in self.feature_columns]
pred_return = self.model.predict([feature_values])[0]
price = latest.get(self.price_col, 0)
if pred_return > 3:
rec = "STRONG BUY 🟒"
elif pred_return > 1:
rec = "BUY 🟒"
elif pred_return > -1:
rec = "HOLD 🟑"
elif pred_return > -3:
rec = "SELL πŸ”΄"
else:
rec = "STRONG SELL πŸ”΄"
return f"{coin_name}: Price=${price:.4f}, Predicted Return={pred_return:+.2f}%, Recommendation={rec}"
def find_opportunities(self, top_n=10):
predictions = []
for coin in self.available_coins:
coin_data = self.df[self.df[self.coin_col] == coin].copy()
features_df = self._create_features(coin_data)
if len(features_df) == 0:
continue
latest = features_df.iloc[-1]
feature_values = [latest.get(c, 0) for c in self.feature_columns]
pred_return = self.model.predict([feature_values])[0]
predictions.append((coin, latest.get(self.price_col, 0), pred_return))
predictions.sort(key=lambda x: x[2], reverse=True)
return pd.DataFrame(predictions[:top_n], columns=['Coin', 'Price', 'Predicted Return %'])
# ==============================
# INIT
# ==============================
df, price_col, date_col, coin_col = load_crypto_data()
predictor = SimpleCryptoPredictor(df, price_col, date_col, coin_col)
predictor.initialize()
# ==============================
# GRADIO APP
# ==============================
def predict_single(coin):
return predictor.predict_coin(coin)
def top_opportunities(n):
df_top = predictor.find_opportunities(int(n))
return df_top
coin_dropdown = gr.Dropdown(choices=predictor.available_coins, label="Select Coin")
top_n_slider = gr.Slider(1, 20, value=10, step=1, label="Top N Opportunities")
with gr.Blocks() as demo:
gr.Markdown("## πŸ“ˆ Crypto Prediction Dashboard")
with gr.Row():
with gr.Column():
gr.Markdown("### Single Coin Prediction")
coin_input = gr.Dropdown(choices=predictor.available_coins, label="Select Coin")
predict_btn = gr.Button("Predict")
prediction_output = gr.Textbox(label="Prediction Result")
with gr.Column():
gr.Markdown("### Top Opportunities")
top_n_input = gr.Slider(1, 20, value=10, step=1, label="Top N Opportunities")
top_btn = gr.Button("Find Opportunities")
table_output = gr.Dataframe(headers=["Coin", "Price", "Predicted Return %"])
predict_btn.click(predict_single, inputs=coin_input, outputs=prediction_output)
top_btn.click(top_opportunities, inputs=top_n_input, outputs=table_output)
if __name__ == "__main__":
demo.launch()