Spaces:
Sleeping
Sleeping
File size: 5,246 Bytes
91c1296 bb84391 4fde749 91c1296 a6e9713 91c1296 e79671d bb84391 0921abd 91c1296 c963386 91c1296 16e2e72 91c1296 0921abd f869bf3 91c1296 bb84391 91c1296 172f5c9 91c1296 f869bf3 bb84391 91c1296 172f5c9 91c1296 f869bf3 16e2e72 e79671d 91c1296 8eb7fd0 91c1296 bb84391 91c1296 8eb7fd0 91c1296 8eb7fd0 91c1296 8eb7fd0 91c1296 8eb7fd0 91c1296 f869bf3 91c1296 bb84391 91c1296 e79671d 91c1296 8eb7fd0 f869bf3 91c1296 0921abd 91c1296 0921abd bb84391 0921abd 91c1296 bb84391 91c1296 bb84391 91c1296 0921abd 16e2e72 bb84391 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
# β
Stock Recommendation Extractor from YouTube Audio (Working Pipeline)
import os
import gradio as gr
import tempfile
import shutil
import re
import traceback
from yt_dlp import YoutubeDL
# Optional: use OpenAI Whisper if available
try:
import whisper
WHISPER_AVAILABLE = True
except:
WHISPER_AVAILABLE = False
# β
Download audio using working logic
def download_audio(url, cookies_path=None):
try:
temp_dir = tempfile.mkdtemp()
output_path = os.path.join(temp_dir, "audio")
ydl_opts = {
'format': 'bestaudio[ext=m4a]/bestaudio/best',
'outtmpl': output_path + '.%(ext)s',
'quiet': True,
'noplaylist': True,
'cookiefile': cookies_path if cookies_path else None,
'user_agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64)',
'referer': 'https://www.youtube.com/',
'force_ipv4': True,
'http_headers': {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64)',
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
'Accept-Language': 'en-US,en;q=0.5',
'Referer': 'https://www.youtube.com/'
},
}
with YoutubeDL(ydl_opts) as ydl:
ydl.download([url])
for ext in [".m4a", ".webm", ".mp3"]:
final_path = output_path + ext
if os.path.exists(final_path):
return final_path, "β
Audio downloaded successfully"
return None, "β Audio file not found"
except Exception as e:
traceback.print_exc()
return None, f"β Download error: {str(e)}"
# β
Transcribe audio using Whisper
def transcribe_audio(path):
if not WHISPER_AVAILABLE:
return "β Whisper not available. Please install openai-whisper."
try:
model = whisper.load_model("tiny")
result = model.transcribe(path)
return result["text"]
except Exception as e:
traceback.print_exc()
return f"β Transcription failed: {str(e)}"
# β
Extract stock-related information from transcript
def extract_stock_info(text):
try:
companies = re.findall(r'\b[A-Z][a-z]+(?: [A-Z][a-z]+)*\b', text)
symbols = re.findall(r'\b[A-Z]{2,5}\b', text)
prices = re.findall(r'\$\d+(?:\.\d{1,2})?', text)
actions = re.findall(r'\b(buy|sell|hold|target|bullish|bearish|stop loss)\b', text, re.IGNORECASE)
result = "=== STOCK RECOMMENDATION ANALYSIS ===\n\n"
if companies:
result += f"π’ Companies Mentioned: {', '.join(set(companies[:10]))}\n"
if symbols:
result += f"π Symbols: {', '.join(set(symbols[:10]))}\n"
if prices:
result += f"π² Prices: {', '.join(set(prices[:10]))}\n"
if actions:
result += f"π Actions: {', '.join(set(actions[:10]))}\n"
# Highlight potential recommendations
recommendations = []
for line in text.split("."):
if any(word in line.lower() for word in ['buy', 'sell', 'target', 'hold']):
recommendations.append(line.strip())
if recommendations:
result += "\nπ― Potential Recommendations:\n"
for r in recommendations[:5]:
result += f"β’ {r}\n"
if not any([companies, symbols, prices, actions]):
result += "\nβ οΈ No stock-related insights detected."
return result
except Exception as e:
return f"β Stock info extraction failed: {str(e)}"
# β
Save uploaded cookies.txt
def save_cookies(file):
if file is None:
return None
temp_path = tempfile.mktemp(suffix=".txt")
with open(temp_path, "wb") as f:
f.write(file.read())
return temp_path
# β
Full pipeline
def run_pipeline(url, cookies_file):
if not WHISPER_AVAILABLE:
return "β Whisper is not installed. Run: pip install openai-whisper", ""
if not url:
return "β YouTube URL required", ""
cookie_path = save_cookies(cookies_file)
audio_path, status = download_audio(url, cookie_path)
if not audio_path:
return status, ""
transcript = transcribe_audio(audio_path)
if transcript.startswith("β"):
return transcript, ""
stock_info = extract_stock_info(transcript)
return "β
Complete", stock_info
# β
Gradio Interface
with gr.Blocks(title="Stock Insights from YouTube Audio") as demo:
gr.Markdown("""
# π§ Extract Stock Recommendations from YouTube Audio
This app downloads the audio from a YouTube video, transcribes it with Whisper,
and extracts stock trading recommendations, sentiments, and symbols.
""")
with gr.Row():
url_input = gr.Textbox(label="π₯ YouTube Video URL")
cookie_input = gr.File(label="cookies.txt (optional)", file_types=[".txt"])
run_btn = gr.Button("π Extract Stock Info")
status_output = gr.Textbox(label="Status")
result_output = gr.Textbox(label="Stock Info", lines=12)
run_btn.click(fn=run_pipeline, inputs=[url_input, cookie_input], outputs=[status_output, result_output])
if __name__ == "__main__":
demo.launch(debug=True)
|