# ✅ Stock Recommendation Extractor from YouTube Audio (with full error reporting) import os import gradio as gr import tempfile import shutil import re import traceback from yt_dlp import YoutubeDL # Optional: use OpenAI Whisper if available try: import whisper WHISPER_AVAILABLE = True except: WHISPER_AVAILABLE = False # ✅ Download audio using working logic def download_audio(url, cookies_path=None): try: temp_dir = tempfile.mkdtemp() output_path = os.path.join(temp_dir, "audio") ydl_opts = { 'format': 'bestaudio[ext=m4a]/bestaudio/best', 'outtmpl': output_path + '.%(ext)s', 'quiet': True, 'noplaylist': True, 'cookiefile': cookies_path if cookies_path else None, 'user_agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64)', 'referer': 'https://www.youtube.com/', 'force_ipv4': True, 'http_headers': { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64)', 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', 'Accept-Language': 'en-US,en;q=0.5', 'Referer': 'https://www.youtube.com/' }, } with YoutubeDL(ydl_opts) as ydl: ydl.download([url]) for ext in [".m4a", ".webm", ".mp3"]: final_path = output_path + ext if os.path.exists(final_path): return final_path, "✅ Audio downloaded successfully" return None, "❌ Audio file not found" except Exception as e: traceback.print_exc() return None, f"❌ Download error: {str(e)}" # ✅ Transcribe audio using Whisper def transcribe_audio(path): if not WHISPER_AVAILABLE: return "❌ Whisper not available. Please install openai-whisper." try: model = whisper.load_model("tiny") result = model.transcribe(path) return result["text"] except Exception as e: traceback.print_exc() return f"❌ Transcription failed: {str(e)}" # ✅ Extract stock-related information from transcript def extract_stock_info(text): try: companies = re.findall(r'\b[A-Z][a-z]+(?: [A-Z][a-z]+)*\b', text) symbols = re.findall(r'\b[A-Z]{2,5}\b', text) prices = re.findall(r'\$\d+(?:\.\d{1,2})?', text) actions = re.findall(r'\b(buy|sell|hold|target|bullish|bearish|stop loss)\b', text, re.IGNORECASE) result = "=== STOCK RECOMMENDATION ANALYSIS ===\n\n" if companies: result += f"🏢 Companies Mentioned: {', '.join(set(companies[:10]))}\n" if symbols: result += f"🔠 Symbols: {', '.join(set(symbols[:10]))}\n" if prices: result += f"💲 Prices: {', '.join(set(prices[:10]))}\n" if actions: result += f"📊 Actions: {', '.join(set(actions[:10]))}\n" # Highlight potential recommendations recommendations = [] for line in text.split("."): if any(word in line.lower() for word in ['buy', 'sell', 'target', 'hold']): recommendations.append(line.strip()) if recommendations: result += "\n🎯 Potential Recommendations:\n" for r in recommendations[:5]: result += f"• {r}\n" if not any([companies, symbols, prices, actions]): result += "\n⚠️ No stock-related insights detected." return result except Exception as e: return f"❌ Stock info extraction failed: {str(e)}" # ✅ Save uploaded cookies.txt def save_cookies(file): if file is None: return None temp_path = tempfile.mktemp(suffix=".txt") try: # Handle both file-like object and NamedString if hasattr(file, "read"): # File-like with open(temp_path, "wb") as f: f.write(file.read()) else: # NamedString (str path) shutil.copy(file, temp_path) return temp_path except Exception as e: print(f"❌ Failed to handle cookies.txt: {e}") return None # ✅ Full pipeline with error traceback def run_pipeline(url, cookies_file): try: if not WHISPER_AVAILABLE: return "❌ Whisper is not installed. Run: pip install openai-whisper", "" if not url: return "❌ YouTube URL required", "" cookie_path = save_cookies(cookies_file) audio_path, status = download_audio(url, cookie_path) if not audio_path: return status, "" transcript = transcribe_audio(audio_path) if transcript.startswith("❌"): return transcript, "" stock_info = extract_stock_info(transcript) return "✅ Complete", stock_info except Exception as e: tb = traceback.format_exc() print(tb) return f"❌ Unhandled Error:\n{tb}", "" # ✅ Gradio Interface with gr.Blocks(title="Stock Insights from YouTube Audio") as demo: gr.Markdown(""" # 🎧 Extract Stock Recommendations from YouTube Audio This app downloads the audio from a YouTube video, transcribes it with Whisper, and extracts stock trading recommendations, sentiments, and symbols. """) with gr.Row(): url_input = gr.Textbox(label="🎥 YouTube Video URL") cookie_input = gr.File(label="cookies.txt (optional)", file_types=[".txt"]) run_btn = gr.Button("🚀 Extract Stock Info") status_output = gr.Textbox(label="Status") result_output = gr.Textbox(label="Stock Info", lines=12) run_btn.click(fn=run_pipeline, inputs=[url_input, cookie_input], outputs=[status_output, result_output]) if __name__ == "__main__": demo.launch(debug=True)