File size: 2,167 Bytes
4fe4c17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a088bb3
bec3eaf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import gradio as gr
import requests
import random
from io import BytesIO
from PIL import Image
import os
import time

# Ambil base URL dari HF Secret (sembunyikan dari code)
BASE_URL = os.environ.get('POLLINATIONS_URL')  # Fallback jika secret tidak ada (untuk testing lokal)

def generate_image(prompt, model):
    if not prompt:
        raise gr.Error("Please enter a prompt.")

    # Randomize seed
    seed = random.randint(1, 999999)

    # Construct full URL (direct to Pollinations)
    url = f"{BASE_URL}{prompt}?width=2048&height=2048&seed={seed}&nologo=true&model={model}"

    max_retries = 2  # Retry jika error (misal limit)
    for attempt in range(max_retries):
        try:
            response = requests.get(url, stream=True)
            response.raise_for_status()  # Raise error jika bukan 200

            # Convert to PIL Image
            img = Image.open(BytesIO(response.content))
            return img

        except requests.exceptions.HTTPError as e:
            if response.status_code == 500 and 'Access to kontext model' in response.text:
                if attempt < max_retries - 1:
                    time.sleep(1)  # Delay sebelum retry
                    continue
                raise gr.Error("Access denied for kontext model (limit reached). Try turbo/flux or authenticate at pollinations.ai.")
            else:
                raise gr.Error(f"Error: {response.status_code} - {response.text}")
        except Exception as e:
            raise gr.Error(f"Unexpected error: {str(e)}")

# Gradio Interface
with gr.Blocks() as demo:
    gr.Markdown("# Fake flux pro Image Generator")

    prompt_input = gr.Textbox(label="Prompt", placeholder="e.g., emma watson")
    model_input = gr.Dropdown(choices=["kontext", "turbo", "flux"], label="Model", value="turbo")  # Default turbo (lebih reliable)

    generate_btn = gr.Button("Generate")
    output_image = gr.Image(label="Generated Image")

    generate_btn.click(generate_image, inputs=[prompt_input, model_input], outputs=output_image)
demo.queue(max_size=None, default_concurrency_limit=None)
demo.launch()  # Tidak ada queue=False atau demo.queue() untuk disable antrian