File size: 21,864 Bytes
d68e12a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b62e4ec
 
 
 
 
 
 
 
 
 
 
 
d68e12a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b08ac4
 
 
 
d68e12a
9b08ac4
d68e12a
 
 
 
9b08ac4
 
 
 
 
d68e12a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b78f40d
9b08ac4
 
 
d68e12a
 
 
 
 
 
 
 
 
 
 
 
76dd9b4
b95abeb
76dd9b4
 
 
b95abeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76dd9b4
 
b95abeb
 
 
 
 
 
 
 
 
 
 
 
 
76dd9b4
 
b95abeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76dd9b4
b95abeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76dd9b4
b95abeb
 
 
 
 
 
76dd9b4
b95abeb
 
 
 
 
 
76dd9b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d68e12a
8e70ec1
 
 
 
 
 
 
 
 
 
 
 
 
d68e12a
8e70ec1
 
 
d68e12a
8e70ec1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d68e12a
 
 
 
 
 
 
 
 
 
 
 
 
 
9b08ac4
d68e12a
9b08ac4
 
 
 
 
 
b78f40d
9b08ac4
 
 
 
 
 
d68e12a
 
 
 
 
 
 
b78f40d
 
 
 
 
9b08ac4
d68e12a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb8f6fb
 
d68e12a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
import os
import io
import sys
import re
import traceback
import subprocess
import gradio as gr
import pandas as pd
from dotenv import load_dotenv
from crewai import Crew, Agent, Task, Process, LLM
from crewai_tools import FileReadTool
from pydantic import BaseModel, Field

# Load environment variables
load_dotenv()

# Get API key from environment variables
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
if not OPENAI_API_KEY:
    raise ValueError("OPENAI_API_KEY environment variable not set")

llm = LLM(
    model="openai/gpt-4o",
    api_key=OPENAI_API_KEY,
    temperature=0.7
)

# 1) Query parser agent
query_parser_agent = Agent(
    role="Stock Data Analyst",
    goal="Extract stock details and fetch required data from this user query: {query}.",
    backstory="You are a financial analyst specializing in stock market data retrieval.",
    llm=llm,
    verbose=True,
    memory=True,
)

# Need to define QueryAnalysisOutput class here as it's used by the task
class QueryAnalysisOutput(BaseModel):
    """Structured output for the query analysis task."""
    symbols: list[str] = Field(
        ...,
        json_schema_extra={"description": "List of stock ticker symbols (e.g., ['TSLA', 'AAPL'])."}
    )
    timeframe: str = Field(
        ...,
        json_schema_extra={"description": "Time period (e.g., '1d', '1mo', '1y')."}
    )
    action: str = Field(
        ...,
        json_schema_extra={"description": "Action to be performed (e.g., 'fetch', 'plot')."}
    )


query_parsing_task = Task(
    description="Analyze the user query and extract stock details.",
    expected_output="A dictionary with keys: 'symbol', 'timeframe', 'action'.",
    output_pydantic=QueryAnalysisOutput,
    agent=query_parser_agent,
)

# 2) Code writer agent
code_writer_agent = Agent(
    role="Senior Python Developer",
    goal="Write Python code to visualize stock data.",
    backstory="""You are a Senior Python developer specializing in stock market data visualization.
                 You are also a Pandas, Matplotlib and yfinance library expert.
                 You are skilled at writing production-ready Python code.
                 Ensure the code handles potential variations in the DataFrame structure returned by yfinance,
                 especially for different timeframes or delisted stocks.
                 Crucially, ensure the generated script saves any generated plot as 'plot.png' using `plt.savefig('plot.png')` before the script ends.""",
    llm=llm,
    verbose=True,
)

code_writer_task = Task(
    description="""Write Python code to visualize stock data based on the inputs from the stock analyst
                   where you would find stock symbol, timeframe and action.""",
    expected_output="A clean and executable Python script file (.py) for stock visualization.",
    agent=code_writer_agent,
)

# 3) Code output agent (instead of execution agent)
code_output_agent = Agent(
    role="Python Code Presenter",
    goal="Present the generated Python code for stock visualization.",
    backstory="You are an expert in presenting Python code in a clear and readable format.",
    allow_delegation=False,  # This agent just presents the code
    llm=llm,
    verbose=True,
)

code_output_task = Task(
    description="""Receive the Python code for stock visualization from the code writer agent and present it.""",
    expected_output="The complete Python script for stock visualization.",
    agent=code_output_agent,
)

crew = Crew(
    agents=[query_parser_agent, code_writer_agent, code_output_agent],  # Use code_output_agent
    tasks=[query_parsing_task, code_writer_task, code_output_task],  # Use code_output_task
    process=Process.sequential
)


def run_crewai_process(user_query, model, temperature):
    """
    Runs the CrewAI process, captures agent thoughts, gets generated code,
    executes the code, and returns results, including plot.

    Args:
        user_query (str): The user's query for the CrewAI process.
        model (str): The model to use for the LLM.
        temperature (float): The temperature to use for the LLM.

    Yields:
        tuple: A tuple containing the agent thoughts (str), the final answer (list of dicts),
               the generated code (str), the execution output (str), and plot file path (str or None).
    """
    # Create a string buffer to capture stdout
    output_buffer = io.StringIO()
    original_stdout = sys.stdout
    sys.stdout = output_buffer
    agent_thoughts = ""
    generated_code = ""
    execution_output = ""
    generated_plot_path = None
    final_answer_chat = [{"role": "user", "content": user_query}]

    try:
        # Initial status update with proper message format
        initial_message = {"role": "assistant", "content": "Starting CrewAI process..."}
        final_answer_chat = [{"role": "user", "content": str(user_query)}, initial_message]
        yield final_answer_chat, agent_thoughts, generated_code, execution_output, None, None

        # Run the crew process
        final_result = crew.kickoff(inputs={"query": user_query})

        # Get the captured CrewAI output (agent thoughts)
        agent_thoughts = output_buffer.getvalue()
        
        # Update with processing message
        processing_message = {"role": "assistant", "content": "Processing complete. Generating code..."}
        final_answer_chat = [{"role": "user", "content": str(user_query)}, processing_message]
        yield final_answer_chat, agent_thoughts, generated_code, execution_output, None, None

        # The final result is the generated code from the code_output_agent
        generated_code_raw = str(final_result).strip()

        # Use regex to extract the code block
        code_match = re.search(r"```python\n(.*?)\n```", generated_code_raw, re.DOTALL)
        if code_match:
            generated_code = code_match.group(1).strip()
        else:
            # If no code block is found, assume the entire output is code (or handle as error)
            generated_code = generated_code_raw
            if not generated_code.strip():  # Handle cases where output is empty or just whitespace
                execution_output = "CrewAI process completed, but no code was generated."
                final_answer_chat.append({"role": "assistant", "content": execution_output})
                yield agent_thoughts, final_answer_chat, generated_code, execution_output, generated_plot_path
                return  # Exit the generator

        # Format for Gradio Chatbot (list of dictionaries with 'role' and 'content' keys only)
        code_gen_message = {"role": "assistant", "content": "Code generation complete. See the 'Generated Code' box. Attempting to execute code..."}
        final_answer_chat = [{"role": "user", "content": str(user_query)}, code_gen_message]
        yield final_answer_chat, agent_thoughts, generated_code, execution_output, None, None

        # --- Execute the generated code ---
        plot_file_path = 'plot.png'  # Expected plot file name

        if generated_code:
            try:
                # Write the generated code to a temporary file
                temp_script_path = "generated_script.py"
                with open(temp_script_path, "w") as f:
                    f.write(generated_code)

                # Execute the temporary script using subprocess
                try:
                    # Add debug info and ensure plot is saved with absolute path
                    debug_script = f"""
import traceback
import sys
import os
import matplotlib
# Use non-interactive backend to avoid display issues
matplotlib.use('Agg')
import matplotlib.pyplot as plt

# Debug info
print("="*80)
print("STARTING SCRIPT EXECUTION")
print("="*80)
print(f"[DEBUG] Python version: {{sys.version}}")
print(f"[DEBUG] Working directory: {{os.getcwd()}}")
print("[DEBUG] Directory contents:")
for f in os.listdir('.'):
    print(f"  - {{f}}{' (dir)' if os.path.isdir(f) else ''}")
print("\n" + "="*80 + "\n")

try:
    # Create a test plot first to verify matplotlib is working
    test_fig, test_ax = plt.subplots()
    test_ax.plot([1, 2, 3], [1, 4, 9])
    test_ax.set_title('Test Plot - If you see this, matplotlib is working')
    test_plot_path = 'test_plot.png'
    test_fig.savefig(test_plot_path, bbox_inches='tight')
    print(f"[DEBUG] Test plot saved to: {{os.path.abspath(test_plot_path)}}")
    print(f"[DEBUG] Test plot size: {{os.path.getsize(test_plot_path)}} bytes")
    
    # Execute the original script
    print("\n" + "="*80)
    print("EXECUTING USER SCRIPT")
    print("="*80)
    {generated_code}
    
    # Ensure any pending plots are drawn
    plt.ioff()
    
    # Save any open figures
    print("\n" + "="*80)
    print("SAVING PLOTS")
    print("="*80)
    
    # Get list of all figure numbers
    fig_nums = plt.get_fignums()
    print(f"[DEBUG] Found {{len(fig_nums)}} open figures")
    
    if fig_nums:
        # Save the last figure as plot.png
        last_fig = plt.figure(fig_nums[-1])
        plot_path = os.path.abspath('plot.png')
        last_fig.savefig(plot_path, bbox_inches='tight', dpi=100)
        print(f"[DEBUG] Saved plot to: {{plot_path}}")
        print(f"[DEBUG] Plot file size: {{os.path.getsize(plot_path)}} bytes")
        
        # Save all figures with unique names
        for i, num in enumerate(fig_nums, 1):
            fig = plt.figure(num)
            fig_path = os.path.abspath(f'plot_{{i}}.png')
            fig.savefig(fig_path, bbox_inches='tight', dpi=100)
            print(f"[DEBUG] Saved additional plot to: {{fig_path}} ({{os.path.getsize(fig_path)}} bytes)")
    else:
        print("[WARNING] No figures were created in the script")
    
    # Print final directory contents
    print("\n" + "="*80)
    print("FINAL DIRECTORY CONTENTS")
    print("="*80)
    for f in os.listdir('.'):
        fpath = os.path.join('.', f)
        if os.path.isfile(fpath):
            print(f"  - {{f}} ({{os.path.getsize(fpath)}} bytes)")
        else:
            print(f"  - {{f}}/ (dir)")
    
    print("\n" + "="*80)
    print("SCRIPT EXECUTION COMPLETE")
    print("="*80)
    
except Exception as e:
    print("\n" + "!"*80)
    print("ERROR DURING EXECUTION")
    print("!"*80)
    print(f"Error type: {{type(e).__name__}}")
    print(f"Error message: {{str(e)}}")
    print("\nTraceback:")
    traceback.print_exc()
    print("\n" + "!"*80 + "\n")
    raise

finally:
    # Always close all figures to free memory
    plt.close('all')
"""
                    # Write the debug script to a temporary file
                    with open(temp_script_path, "w") as f:
                        f.write(debug_script)

                    # Execute the script
                    process = subprocess.run(
                        ["python3", temp_script_path],
                        capture_output=True,
                        text=True,
                        check=False
                    )
                    
                    # Capture both stdout and stderr
                    execution_output = process.stdout
                    if process.stderr:
                        execution_output += "\n\n[ERROR] Script execution errors:\n" + process.stderr
                    
                    # Check for common issues in the output
                    if "KeyError" in execution_output:
                        execution_output += "\n\n[HELP] The script encountered a KeyError. This typically happens when trying to access a column that doesn't exist in the stock data.\n"
                        execution_output += "Common causes:\n"
                        execution_output += "1. The stock symbol might not be recognized by yfinance\n"
                        execution_output += "2. The requested time period might not have data (e.g., weekends, holidays)\n"
                        execution_output += "3. The data column names might be different than expected\n\n"
                        execution_output += "Please try a different stock symbol or time period."
                        
                    if "No data" in execution_output or "not found" in execution_output.lower():
                        execution_output += "\n\n[HELP] No data was returned for the specified stock symbol or time period.\n"
                        execution_output += "Please check the stock symbol and try a different time period."
                        
                    if "Figure(" in execution_output and "plot.png" not in os.listdir():
                        execution_output += "\n\n[HELP] A plot was created but not saved. Adding save command...\n"
                        # Try to save the plot if it wasn't saved
                        try:
                            import matplotlib.pyplot as plt
                            if plt.get_fignums():
                                plt.savefig('plot.png')
                                execution_output += "Successfully saved plot to plot.png"
                                generated_plot_path = 'plot.png'
                            plt.close('all')
                        except Exception as e:
                            execution_output += f"Failed to save plot: {str(e)}"
                except Exception as e:
                    execution_output = f"Error during script execution: {str(e)}\n\n"
                    execution_output += "Please check the generated code for issues or try a different query."

                # Enhanced plot file checking with more detailed debugging
                plot_debug_info = []
                plot_found = False
                
                # Check in current directory first
                current_dir = os.getcwd()
                plot_abs_path = os.path.abspath(plot_file_path)
                
                # Log directory contents for debugging
                plot_debug_info.append(f"Current directory: {current_dir}")
                plot_debug_info.append("Directory contents:" + "\n- " + "\n- ".join(os.listdir('.')))
                
                # Check if plot exists in current directory
                if os.path.exists(plot_file_path):
                    plot_found = True
                    plot_debug_info.append(f"βœ… Plot file found at: {plot_abs_path}")
                    generated_plot_path = plot_file_path
                else:
                    # Try to find the plot file in subdirectories
                    for root, _, files in os.walk('.'):
                        if plot_file_path in files:
                            found_path = os.path.join(root, plot_file_path)
                            plot_found = True
                            plot_debug_info.append(f"βœ… Plot file found at: {os.path.abspath(found_path)}")
                            generated_plot_path = found_path
                            break
                    
                    if not plot_found:
                        plot_debug_info.append(f"❌ Plot file not found at: {plot_abs_path}")
                        plot_debug_info.append("Troubleshooting tips:")
                        plot_debug_info.append("1. Ensure the script calls plt.savefig('plot.png')")
                        plot_debug_info.append("2. Check for any errors in the execution output")
                        plot_debug_info.append("3. Verify the script has write permissions in the current directory")
                
                # Add debug info to execution output
                execution_output += "\n\n[PLOT DEBUG] " + "\n[PLOT DEBUG] ".join(plot_debug_info)
                
                if not plot_found:
                    execution_output += f"\n\n[ERROR] Plot file '{plot_file_path}' was not generated. Check the debug information above for details."

            except Exception as e:
                traceback_str = traceback.format_exc()
                execution_output = f"An error occurred during code execution: {e}\n{traceback_str}"

            finally:
                # Clean up the temporary script file
                if os.path.exists(temp_script_path):
                    os.remove(temp_script_path)

        else:
            execution_output = "No code was generated to execute."

        # Update final answer chat to reflect execution attempt
        execution_complete_msg = "Code execution finished. See 'Execution Output'."
        if generated_plot_path:
            plot_msg = "Plot generated successfully. See 'Generated Plot'."
            final_answer_chat = [
                {"role": "user", "content": str(user_query)},
                {"role": "assistant", "content": execution_complete_msg},
                {"role": "assistant", "content": plot_msg}
            ]
        else:
            no_plot_msg = "No plot was generated. Check the execution output for details."
            final_answer_chat = [
                {"role": "user", "content": str(user_query)},
                {"role": "assistant", "content": execution_complete_msg},
                {"role": "assistant", "content": no_plot_msg}
            ]

        yield agent_thoughts, final_answer_chat, generated_code, execution_output, generated_plot_path

    except Exception as e:
        # If an error occurs during CrewAI process, return the error message
        traceback_str = traceback.format_exc()
        agent_thoughts += f"\nAn error occurred during CrewAI process: {e}\n{traceback_str}"
        error_message = f"An error occurred during CrewAI process: {e}"
        final_answer_chat = [
            {"role": "user", "content": str(user_query)},
            {"role": "assistant", "content": error_message}
        ]
        yield final_answer_chat, agent_thoughts, generated_code, execution_output, None, None

    finally:
        # Restore original stdout
        sys.stdout = original_stdout


def create_interface():
    """Create and return the Gradio interface."""
    with gr.Blocks(title="Financial Analytics Agent", theme=gr.themes.Soft()) as interface:
        gr.Markdown("# πŸ“Š Financial Analytics Agent")
        gr.Markdown("Enter your financial query to analyze stock data and generate visualizations.")
        
        with gr.Row():
            with gr.Column(scale=2):
                user_query_input = gr.Textbox(
                    label="Enter your financial query",
                    placeholder="e.g., Show me the stock performance of AAPL and MSFT for the last year",
                    lines=3
                )
                submit_btn = gr.Button("Analyze", variant="primary")
                
                with gr.Accordion("Advanced Options", open=False):
                    gr.Markdown("### Model Settings")
                    model_dropdown = gr.Dropdown(
                        ["gpt-4o", "gpt-4-turbo", "gpt-3.5-turbo"],
                        value="gpt-4o",
                        label="Model"
                    )
                    temperature = gr.Slider(
                        minimum=0.1,
                        maximum=1.0,
                        value=0.7,
                        step=0.1,
                        label="Creativity (Temperature)"
                    )
            
            with gr.Column(scale=3):
                with gr.Tabs():
                    with gr.TabItem("Analysis"):
                        final_answer_chat = gr.Chatbot(
                            label="Analysis Results",
                            height=300,
                            show_copy_button=True,
                            type="messages"  # Explicitly set to use OpenAI-style message format
                        )
                    
                    with gr.TabItem("Agent Thoughts"):
                        agent_thoughts = gr.Textbox(
                            label="Agent Thinking Process",
                            interactive=False,
                            lines=15,
                            max_lines=30,
                            show_copy_button=True
                        )
                    
                    with gr.TabItem("Generated Code"):
                        generated_code = gr.Code(
                            label="Generated Python Code",
                            language="python",
                            interactive=False,
                            lines=15
                        )
                    
                    with gr.TabItem("Execution Output"):
                        execution_output = gr.Textbox(
                            label="Code Execution Output",
                            interactive=False,
                            lines=10,
                            show_copy_button=True
                        )
                
                with gr.Row():
                    with gr.Column():
                        plot_output = gr.Plot(
                            label="Generated Visualization",
                            visible=False
                        )
                        image_output = gr.Image(
                            label="Generated Plot",
                            type="filepath",
                            visible=False
                        )
        
        # Handle form submission
        inputs = [user_query_input, model_dropdown, temperature]
        outputs = [
            final_answer_chat,
            agent_thoughts,
            generated_code,
            execution_output,
            plot_output,
            image_output
        ]
        
        submit_btn.click(
            fn=run_crewai_process,
            inputs=inputs,
            outputs=outputs,
            api_name="analyze"
        )
    
    return interface


def main():
    """Run the Gradio interface."""
    interface = create_interface()
    interface.launch(share=False, server_name="0.0.0.0", server_port=7860)


if __name__ == "__main__":
    main()