File size: 28,235 Bytes
d68e12a b62e4ec d68e12a 9b08ac4 d68e12a 9b08ac4 d68e12a 9b08ac4 d68e12a b78f40d 9b08ac4 d68e12a bc80b7a b95abeb bc80b7a 76dd9b4 bc80b7a b95abeb bc80b7a b95abeb bc80b7a b95abeb 76dd9b4 bc80b7a b95abeb bc80b7a b95abeb bc80b7a b95abeb bc80b7a b95abeb bc80b7a 76dd9b4 bc80b7a b95abeb 76dd9b4 b95abeb 76dd9b4 b95abeb 76dd9b4 d68e12a 8e70ec1 d68e12a 8e70ec1 d68e12a 8e70ec1 d68e12a 9b08ac4 d68e12a 9b08ac4 b78f40d 9b08ac4 d68e12a b78f40d 9b08ac4 d68e12a bb8f6fb d68e12a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 |
import os
import io
import sys
import re
import traceback
import subprocess
import gradio as gr
import pandas as pd
from dotenv import load_dotenv
from crewai import Crew, Agent, Task, Process, LLM
from crewai_tools import FileReadTool
from pydantic import BaseModel, Field
# Load environment variables
load_dotenv()
# Get API key from environment variables
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
if not OPENAI_API_KEY:
raise ValueError("OPENAI_API_KEY environment variable not set")
llm = LLM(
model="openai/gpt-4o",
api_key=OPENAI_API_KEY,
temperature=0.7
)
# 1) Query parser agent
query_parser_agent = Agent(
role="Stock Data Analyst",
goal="Extract stock details and fetch required data from this user query: {query}.",
backstory="You are a financial analyst specializing in stock market data retrieval.",
llm=llm,
verbose=True,
memory=True,
)
# Need to define QueryAnalysisOutput class here as it's used by the task
class QueryAnalysisOutput(BaseModel):
"""Structured output for the query analysis task."""
symbols: list[str] = Field(
...,
json_schema_extra={"description": "List of stock ticker symbols (e.g., ['TSLA', 'AAPL'])."}
)
timeframe: str = Field(
...,
json_schema_extra={"description": "Time period (e.g., '1d', '1mo', '1y')."}
)
action: str = Field(
...,
json_schema_extra={"description": "Action to be performed (e.g., 'fetch', 'plot')."}
)
query_parsing_task = Task(
description="Analyze the user query and extract stock details.",
expected_output="A dictionary with keys: 'symbol', 'timeframe', 'action'.",
output_pydantic=QueryAnalysisOutput,
agent=query_parser_agent,
)
# 2) Code writer agent
code_writer_agent = Agent(
role="Senior Python Developer",
goal="Write Python code to visualize stock data.",
backstory="""You are a Senior Python developer specializing in stock market data visualization.
You are also a Pandas, Matplotlib and yfinance library expert.
You are skilled at writing production-ready Python code.
Ensure the code handles potential variations in the DataFrame structure returned by yfinance,
especially for different timeframes or delisted stocks.
Crucially, ensure the generated script saves any generated plot as 'plot.png' using `plt.savefig('plot.png')` before the script ends.""",
llm=llm,
verbose=True,
)
code_writer_task = Task(
description="""Write Python code to visualize stock data based on the inputs from the stock analyst
where you would find stock symbol, timeframe and action.""",
expected_output="A clean and executable Python script file (.py) for stock visualization.",
agent=code_writer_agent,
)
# 3) Code output agent (instead of execution agent)
code_output_agent = Agent(
role="Python Code Presenter",
goal="Present the generated Python code for stock visualization.",
backstory="You are an expert in presenting Python code in a clear and readable format.",
allow_delegation=False, # This agent just presents the code
llm=llm,
verbose=True,
)
code_output_task = Task(
description="""Receive the Python code for stock visualization from the code writer agent and present it.""",
expected_output="The complete Python script for stock visualization.",
agent=code_output_agent,
)
crew = Crew(
agents=[query_parser_agent, code_writer_agent, code_output_agent], # Use code_output_agent
tasks=[query_parsing_task, code_writer_task, code_output_task], # Use code_output_task
process=Process.sequential
)
def run_crewai_process(user_query, model, temperature):
"""
Runs the CrewAI process, captures agent thoughts, gets generated code,
executes the code, and returns results, including plot.
Args:
user_query (str): The user's query for the CrewAI process.
model (str): The model to use for the LLM.
temperature (float): The temperature to use for the LLM.
Yields:
tuple: A tuple containing the agent thoughts (str), the final answer (list of dicts),
the generated code (str), the execution output (str), and plot file path (str or None).
"""
# Create a string buffer to capture stdout
output_buffer = io.StringIO()
original_stdout = sys.stdout
sys.stdout = output_buffer
agent_thoughts = ""
generated_code = ""
execution_output = ""
generated_plot_path = None
final_answer_chat = [{"role": "user", "content": user_query}]
try:
# Initial status update with proper message format
initial_message = {"role": "assistant", "content": "Starting CrewAI process..."}
final_answer_chat = [{"role": "user", "content": str(user_query)}, initial_message]
yield final_answer_chat, agent_thoughts, generated_code, execution_output, None, None
# Run the crew process
final_result = crew.kickoff(inputs={"query": user_query})
# Get the captured CrewAI output (agent thoughts)
agent_thoughts = output_buffer.getvalue()
# Update with processing message
processing_message = {"role": "assistant", "content": "Processing complete. Generating code..."}
final_answer_chat = [{"role": "user", "content": str(user_query)}, processing_message]
yield final_answer_chat, agent_thoughts, generated_code, execution_output, None, None
# The final result is the generated code from the code_output_agent
generated_code_raw = str(final_result).strip()
# Use regex to extract the code block
code_match = re.search(r"```python\n(.*?)\n```", generated_code_raw, re.DOTALL)
if code_match:
generated_code = code_match.group(1).strip()
else:
# If no code block is found, assume the entire output is code (or handle as error)
generated_code = generated_code_raw
if not generated_code.strip(): # Handle cases where output is empty or just whitespace
execution_output = "CrewAI process completed, but no code was generated."
final_answer_chat.append({"role": "assistant", "content": execution_output})
yield agent_thoughts, final_answer_chat, generated_code, execution_output, generated_plot_path
return # Exit the generator
# Format for Gradio Chatbot (list of dictionaries with 'role' and 'content' keys only)
code_gen_message = {"role": "assistant", "content": "Code generation complete. See the 'Generated Code' box. Attempting to execute code..."}
final_answer_chat = [{"role": "user", "content": str(user_query)}, code_gen_message]
yield final_answer_chat, agent_thoughts, generated_code, execution_output, None, None
# --- Execute the generated code ---
plot_file_path = 'plot.png' # Expected plot file name
if generated_code:
try:
# Write the generated code to a temporary file
temp_script_path = "generated_script.py"
with open(temp_script_path, "w") as f:
f.write(generated_code)
# Create a debug script that will be executed in a subprocess
debug_script = """
import os
import sys
import traceback
try:
print("\n" + "="*80)
print("STOCK PLOT GENERATION")
print("="*80)
# Import the stock plot module
try:
import stock_plot
# Generate the plot using the module
plot_path = stock_plot.plot_stock_gain(["META"], "ytd")
print("\n" + "="*80)
print("PLOT GENERATION COMPLETE")
print("="*80)
if plot_path and os.path.exists(plot_path):
file_size = os.path.getsize(plot_path)
print(f"β Plot generated successfully: {os.path.abspath(plot_path)}")
print(f"β File size: {file_size} bytes")
# Also check for plot.png in the root directory
if os.path.exists('plot.png'):
print(f"β Main plot.png found: {os.path.abspath('plot.png')}")
else:
print("βΉοΈ plot.png not found in root directory")
else:
print("β Failed to generate plot or plot file not found")
except ImportError as e:
print(f"β Error importing stock_plot module: {e}")
print("Make sure the stock_plot.py file exists in the same directory.")
raise
print("\n" + "="*80)
print("DIRECTORY CONTENTS")
print("="*80)
# List all files in the current directory
for f in sorted(os.listdir('.')):
try:
fpath = os.path.join('.', f)
if os.path.isfile(fpath):
size = os.path.getsize(fpath)
print(f" - {f} ({size} bytes)")
else:
print(f" - {f}/ (dir)")
except Exception as e:
print(f" - {f} (error: {e})")
# Check for generated_plots directory
plots_dir = 'generated_plots'
if os.path.exists(plots_dir) and os.path.isdir(plots_dir):
print(f"\nContents of {plots_dir}/:")
try:
for f in sorted(os.listdir(plots_dir)):
try:
fpath = os.path.join(plots_dir, f)
if os.path.isfile(fpath):
size = os.path.getsize(fpath)
print(f" - {f} ({size} bytes)")
except Exception as e:
print(f" - {f} (error: {e})")
except Exception as e:
print(f" Error reading {plots_dir}: {e}")
except Exception as e:
print(f"\nβ UNEXPECTED ERROR: {str(e)}")
print("\nTraceback:")
traceback.print_exc()
sys.exit(1)
"""
# Create a simple test plot
try:
# Create a new figure with a larger size
fig, ax = plt.subplots(figsize=(10, 6))
# Generate some sample data
x = [1, 2, 3, 4, 5]
y = [1, 4, 9, 16, 25]
# Create the plot
ax.plot(x, y, 'b-', linewidth=2, label='Sample Data')
# Add labels and title
ax.set_title('Test Plot - Matplotlib Verification', fontsize=14)
ax.set_xlabel('X Axis', fontsize=12)
ax.set_ylabel('Y Axis', fontsize=12)
# Add grid and legend
ax.grid(True, linestyle='--', alpha=0.7)
ax.legend(fontsize=10)
# Adjust layout to prevent label cutoff
plt.tight_layout()
# Save the test plot
test_plot_path = 'test_plot.png'
fig.savefig(test_plot_path, dpi=120, bbox_inches='tight')
print(f"β Test plot saved to: {os.path.abspath(test_plot_path)}")
# Close the figure to free memory
plt.close(fig)
except Exception as e:
print(f"β Error creating test plot: {e}")
print("Traceback:")
traceback.print_exc()
# Save with different formats and verify
test_formats = [
('test_plot.png', 'PNG'),
('test_plot.jpg', 'JPEG'),
('test_plot.pdf', 'PDF')
]
for filename, fmt in test_formats:
try:
test_fig.savefig(filename, bbox_inches='tight', dpi=100)
abs_path = os.path.abspath(filename)
file_size = os.path.getsize(filename)
print(f"β Saved {{fmt}} to: {{abs_path}} ({{file_size}} bytes)")
# Verify file is not empty
if file_size == 0:
print(f" β WARNING: {{fmt}} file is empty!")
elif file_size < 1024: # Very small file might be corrupted
print(f" β WARNING: {{fmt}} file is unusually small ({{file_size}} bytes)")
except Exception as e:
print(f"β Failed to save {{fmt}}: {{str(e)}}")
# Clean up
plt.close(test_fig)
# Test 2: Verify file system access
print("\n" + "="*80)
print("TEST 2: FILE SYSTEM VERIFICATION")
print("="*80)
# Check if files were created
for filename, _ in test_formats:
if os.path.exists(filename):
try:
file_size = os.path.getsize(filename)
print(f"β Found {{filename}} ({{file_size}} bytes)")
# Try to read the file
with open(filename, 'rb') as f:
header = f.read(4)
print(f" File header: {{header[:20].hex()}}...")
except Exception as e:
print(f"β Error reading {{filename}}: {{str(e)}}")
else:
print(f"β File not found: {{filename}}")
# Execute the original script with error handling
print("\n" + "="*80)
print("EXECUTING USER SCRIPT")
print("="*80)
# Create a safe execution environment
try:
# Execute the user's code
exec_globals = {{'plt': plt, 'pd': __import__('pandas')}}
exec_globals.update({{'__builtins__': __builtins__}})
# Execute in a separate namespace to avoid polluting globals
user_namespace = {{}}
user_code = compile(
{generated_code!r}.lstrip('\n').lstrip(' '),
'<user_code>', 'exec',
dont_inherit=True,
optimize=2
)
exec(user_code, user_namespace, user_namespace)
# Ensure any pending plots are drawn
plt.ioff()
# Save any open figures
print("\n" + "="*80)
print("SAVING PLOTS")
print("="*80)
# Get list of all figure numbers
fig_nums = plt.get_fignums()
print(f"Found {{len(fig_nums)}} open figures")
if fig_nums:
# Create plots directory if it doesn't exist
plots_dir = 'generated_plots'
os.makedirs(plots_dir, exist_ok=True)
# Save all figures with unique names
saved_plots = []
for i, num in enumerate(fig_nums, 1):
try:
fig = plt.figure(num)
plot_name = f'plot_{{i}}.png'
plot_path = os.path.abspath(os.path.join(plots_dir, plot_name))
# Save with high DPI and tight layout
fig.savefig(
plot_path,
bbox_inches='tight',
dpi=150,
facecolor=fig.get_facecolor(),
edgecolor='none',
transparent=False
)
file_size = os.path.getsize(plot_path)
print(f"β Saved plot {{i}} to: {{plot_path}} ({{file_size}} bytes)")
saved_plots.append(plot_path)
# If this is the last figure, also save as plot.png in root
if i == len(fig_nums):
root_plot_path = os.path.abspath('plot.png')
fig.savefig(root_plot_path, bbox_inches='tight', dpi=150)
print(f"β Saved main plot to: {{root_plot_path}}")
saved_plots.append(root_plot_path)
except Exception as e:
print(f"β Error saving figure {{num}}: {{str(e)}}")
if saved_plots:
generated_plot_path = saved_plots[-1] # Use the last saved plot as the main plot
print(f"\nSuccessfully saved {{len(saved_plots)}} plot(s)")
else:
print("βΉοΈ No figures were created by the user script")
except Exception as e:
print(f"\nβ Error executing user script: {{str(e)}}")
print("\nTraceback:")
traceback.print_exc()
raise
# Print final directory contents
print("\n" + "="*80)
print("FINAL DIRECTORY CONTENTS")
print("="*80)
for f in os.listdir('.'):
fpath = os.path.join('.', f)
if os.path.isfile(fpath):
print(f" - {{f}} ({{os.path.getsize(fpath)}} bytes)")
else:
print(f" - {{f}}/ (dir)")
print("\n" + "="*80)
print("SCRIPT EXECUTION COMPLETE")
print("="*80)
except Exception as e:
print("\n" + "!"*80)
print("ERROR DURING EXECUTION")
print("!"*80)
print(f"Error type: {{type(e).__name__}}")
print(f"Error message: {{str(e)}}")
print("\nTraceback:")
traceback.print_exc()
print("\n" + "!"*80 + "\n")
raise
finally:
# Always close all figures to free memory
plt.close('all')
"""
# Write the debug script to a temporary file
with open(temp_script_path, "w") as f:
f.write(debug_script)
# Execute the script
process = subprocess.run(
["python3", temp_script_path],
capture_output=True,
text=True,
check=False
)
# Capture both stdout and stderr
execution_output = process.stdout
if process.stderr:
execution_output += "\n\n[ERROR] Script execution errors:\n" + process.stderr
# Check for common issues in the output
if "KeyError" in execution_output:
execution_output += "\n\n[HELP] The script encountered a KeyError. This typically happens when trying to access a column that doesn't exist in the stock data.\n"
execution_output += "Common causes:\n"
execution_output += "1. The stock symbol might not be recognized by yfinance\n"
execution_output += "2. The requested time period might not have data (e.g., weekends, holidays)\n"
execution_output += "3. The data column names might be different than expected\n\n"
execution_output += "Please try a different stock symbol or time period."
if "No data" in execution_output or "not found" in execution_output.lower():
execution_output += "\n\n[HELP] No data was returned for the specified stock symbol or time period.\n"
execution_output += "Please check the stock symbol and try a different time period."
if "Figure(" in execution_output and "plot.png" not in os.listdir():
execution_output += "\n\n[HELP] A plot was created but not saved. Adding save command...\n"
# Try to save the plot if it wasn't saved
try:
import matplotlib.pyplot as plt
if plt.get_fignums():
plt.savefig('plot.png')
execution_output += "Successfully saved plot to plot.png"
generated_plot_path = 'plot.png'
plt.close('all')
except Exception as e:
execution_output += f"Failed to save plot: {str(e)}"
except Exception as e:
execution_output = f"Error during script execution: {str(e)}\n\n"
execution_output += "Please check the generated code for issues or try a different query."
# Enhanced plot file checking with more detailed debugging
plot_debug_info = []
plot_found = False
# Check in current directory first
current_dir = os.getcwd()
plot_abs_path = os.path.abspath(plot_file_path)
# Log directory contents for debugging
plot_debug_info.append(f"Current directory: {current_dir}")
plot_debug_info.append("Directory contents:" + "\n- " + "\n- ".join(os.listdir('.')))
# Check if plot exists in current directory
if os.path.exists(plot_file_path):
plot_found = True
plot_debug_info.append(f"β
Plot file found at: {plot_abs_path}")
generated_plot_path = plot_file_path
else:
# Try to find the plot file in subdirectories
for root, _, files in os.walk('.'):
if plot_file_path in files:
found_path = os.path.join(root, plot_file_path)
plot_found = True
plot_debug_info.append(f"β
Plot file found at: {os.path.abspath(found_path)}")
generated_plot_path = found_path
break
if not plot_found:
plot_debug_info.append(f"β Plot file not found at: {plot_abs_path}")
plot_debug_info.append("Troubleshooting tips:")
plot_debug_info.append("1. Ensure the script calls plt.savefig('plot.png')")
plot_debug_info.append("2. Check for any errors in the execution output")
plot_debug_info.append("3. Verify the script has write permissions in the current directory")
# Add debug info to execution output
execution_output += "\n\n[PLOT DEBUG] " + "\n[PLOT DEBUG] ".join(plot_debug_info)
if not plot_found:
execution_output += f"\n\n[ERROR] Plot file '{plot_file_path}' was not generated. Check the debug information above for details."
except Exception as e:
traceback_str = traceback.format_exc()
execution_output = f"An error occurred during code execution: {e}\n{traceback_str}"
finally:
# Clean up the temporary script file
if os.path.exists(temp_script_path):
os.remove(temp_script_path)
else:
execution_output = "No code was generated to execute."
# Update final answer chat to reflect execution attempt
execution_complete_msg = "Code execution finished. See 'Execution Output'."
if generated_plot_path:
plot_msg = "Plot generated successfully. See 'Generated Plot'."
final_answer_chat = [
{"role": "user", "content": str(user_query)},
{"role": "assistant", "content": execution_complete_msg},
{"role": "assistant", "content": plot_msg}
]
else:
no_plot_msg = "No plot was generated. Check the execution output for details."
final_answer_chat = [
{"role": "user", "content": str(user_query)},
{"role": "assistant", "content": execution_complete_msg},
{"role": "assistant", "content": no_plot_msg}
]
yield agent_thoughts, final_answer_chat, generated_code, execution_output, generated_plot_path
except Exception as e:
# If an error occurs during CrewAI process, return the error message
traceback_str = traceback.format_exc()
agent_thoughts += f"\nAn error occurred during CrewAI process: {e}\n{traceback_str}"
error_message = f"An error occurred during CrewAI process: {e}"
final_answer_chat = [
{"role": "user", "content": str(user_query)},
{"role": "assistant", "content": error_message}
]
yield final_answer_chat, agent_thoughts, generated_code, execution_output, None, None
finally:
# Restore original stdout
sys.stdout = original_stdout
def create_interface():
"""Create and return the Gradio interface."""
with gr.Blocks(title="Financial Analytics Agent", theme=gr.themes.Soft()) as interface:
gr.Markdown("# π Financial Analytics Agent")
gr.Markdown("Enter your financial query to analyze stock data and generate visualizations.")
with gr.Row():
with gr.Column(scale=2):
user_query_input = gr.Textbox(
label="Enter your financial query",
placeholder="e.g., Show me the stock performance of AAPL and MSFT for the last year",
lines=3
)
submit_btn = gr.Button("Analyze", variant="primary")
with gr.Accordion("Advanced Options", open=False):
gr.Markdown("### Model Settings")
model_dropdown = gr.Dropdown(
["gpt-4o", "gpt-4-turbo", "gpt-3.5-turbo"],
value="gpt-4o",
label="Model"
)
temperature = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.7,
step=0.1,
label="Creativity (Temperature)"
)
with gr.Column(scale=3):
with gr.Tabs():
with gr.TabItem("Analysis"):
final_answer_chat = gr.Chatbot(
label="Analysis Results",
height=300,
show_copy_button=True,
type="messages" # Explicitly set to use OpenAI-style message format
)
with gr.TabItem("Agent Thoughts"):
agent_thoughts = gr.Textbox(
label="Agent Thinking Process",
interactive=False,
lines=15,
max_lines=30,
show_copy_button=True
)
with gr.TabItem("Generated Code"):
generated_code = gr.Code(
label="Generated Python Code",
language="python",
interactive=False,
lines=15
)
with gr.TabItem("Execution Output"):
execution_output = gr.Textbox(
label="Code Execution Output",
interactive=False,
lines=10,
show_copy_button=True
)
with gr.Row():
with gr.Column():
plot_output = gr.Plot(
label="Generated Visualization",
visible=False
)
image_output = gr.Image(
label="Generated Plot",
type="filepath",
visible=False
)
# Handle form submission
inputs = [user_query_input, model_dropdown, temperature]
outputs = [
final_answer_chat,
agent_thoughts,
generated_code,
execution_output,
plot_output,
image_output
]
submit_btn.click(
fn=run_crewai_process,
inputs=inputs,
outputs=outputs,
api_name="analyze"
)
return interface
def main():
"""Run the Gradio interface."""
interface = create_interface()
interface.launch(share=False, server_name="0.0.0.0", server_port=7860)
if __name__ == "__main__":
main() |