File size: 15,994 Bytes
d68e12a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b62e4ec
 
 
 
 
 
 
 
 
 
 
 
d68e12a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b08ac4
 
 
 
d68e12a
9b08ac4
d68e12a
 
 
 
9b08ac4
 
 
 
 
d68e12a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b78f40d
9b08ac4
 
 
d68e12a
 
 
 
 
 
 
 
 
 
 
dcfac75
57d9a46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d68e12a
1740ecf
f44bd60
 
 
 
 
d68e12a
f44bd60
 
d68e12a
 
 
 
 
 
 
 
 
 
 
 
 
 
9b08ac4
d68e12a
f44bd60
9b08ac4
 
 
 
 
f44bd60
 
b78f40d
f44bd60
9b08ac4
 
 
 
 
f44bd60
 
d68e12a
 
 
 
 
 
 
b78f40d
 
 
 
 
9b08ac4
d68e12a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb8f6fb
 
d68e12a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
import os
import io
import sys
import re
import traceback
import subprocess
import gradio as gr
import pandas as pd
from dotenv import load_dotenv
from crewai import Crew, Agent, Task, Process, LLM
from crewai_tools import FileReadTool
from pydantic import BaseModel, Field

# Load environment variables
load_dotenv()

# Get API key from environment variables
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
if not OPENAI_API_KEY:
    raise ValueError("OPENAI_API_KEY environment variable not set")

llm = LLM(
    model="openai/gpt-4o",
    api_key=OPENAI_API_KEY,
    temperature=0.7
)

# 1) Query parser agent
query_parser_agent = Agent(
    role="Stock Data Analyst",
    goal="Extract stock details and fetch required data from this user query: {query}.",
    backstory="You are a financial analyst specializing in stock market data retrieval.",
    llm=llm,
    verbose=True,
    memory=True,
)

# Need to define QueryAnalysisOutput class here as it's used by the task
class QueryAnalysisOutput(BaseModel):
    """Structured output for the query analysis task."""
    symbols: list[str] = Field(
        ...,
        json_schema_extra={"description": "List of stock ticker symbols (e.g., ['TSLA', 'AAPL'])."}
    )
    timeframe: str = Field(
        ...,
        json_schema_extra={"description": "Time period (e.g., '1d', '1mo', '1y')."}
    )
    action: str = Field(
        ...,
        json_schema_extra={"description": "Action to be performed (e.g., 'fetch', 'plot')."}
    )


query_parsing_task = Task(
    description="Analyze the user query and extract stock details.",
    expected_output="A dictionary with keys: 'symbol', 'timeframe', 'action'.",
    output_pydantic=QueryAnalysisOutput,
    agent=query_parser_agent,
)

# 2) Code writer agent
code_writer_agent = Agent(
    role="Senior Python Developer",
    goal="Write Python code to visualize stock data.",
    backstory="""You are a Senior Python developer specializing in stock market data visualization.
                 You are also a Pandas, Matplotlib and yfinance library expert.
                 You are skilled at writing production-ready Python code.
                 Ensure the code handles potential variations in the DataFrame structure returned by yfinance,
                 especially for different timeframes or delisted stocks.
                 Crucially, ensure the generated script saves any generated plot as 'plot.png' using `plt.savefig('plot.png')` before the script ends.""",
    llm=llm,
    verbose=True,
)

code_writer_task = Task(
    description="""Write Python code to visualize stock data based on the inputs from the stock analyst
                   where you would find stock symbol, timeframe and action.""",
    expected_output="A clean and executable Python script file (.py) for stock visualization.",
    agent=code_writer_agent,
)

# 3) Code output agent (instead of execution agent)
code_output_agent = Agent(
    role="Python Code Presenter",
    goal="Present the generated Python code for stock visualization.",
    backstory="You are an expert in presenting Python code in a clear and readable format.",
    allow_delegation=False,  # This agent just presents the code
    llm=llm,
    verbose=True,
)

code_output_task = Task(
    description="""Receive the Python code for stock visualization from the code writer agent and present it.""",
    expected_output="The complete Python script for stock visualization.",
    agent=code_output_agent,
)

crew = Crew(
    agents=[query_parser_agent, code_writer_agent, code_output_agent],  # Use code_output_agent
    tasks=[query_parsing_task, code_writer_task, code_output_task],  # Use code_output_task
    process=Process.sequential
)


def run_crewai_process(user_query, model, temperature):
    """
    Runs the CrewAI process, captures agent thoughts, gets generated code,
    executes the code, and returns results, including plot.

    Args:
        user_query (str): The user's query for the CrewAI process.
        model (str): The model to use for the LLM.
        temperature (float): The temperature to use for the LLM.

    Yields:
        tuple: A tuple containing the agent thoughts (str), the final answer (list of dicts),
               the generated code (str), the execution output (str), and plot file path (str or None).
    """
    # Create a string buffer to capture stdout
    output_buffer = io.StringIO()
    original_stdout = sys.stdout
    sys.stdout = output_buffer
    agent_thoughts = ""
    generated_code = ""
    execution_output = ""
    generated_plot_path = None
    final_answer_chat = [{"role": "user", "content": user_query}]

    try:
        # Initial status update with proper message format
        initial_message = {"role": "assistant", "content": "Starting CrewAI process..."}
        final_answer_chat = [{"role": "user", "content": str(user_query)}, initial_message]
        yield final_answer_chat, agent_thoughts, generated_code, execution_output, None, None

        # Run the crew process
        final_result = crew.kickoff(inputs={"query": user_query})

        # Get the captured CrewAI output (agent thoughts)
        agent_thoughts = output_buffer.getvalue()
        
        # Update with processing message
        processing_message = {"role": "assistant", "content": "Processing complete. Generating code..."}
        final_answer_chat = [{"role": "user", "content": str(user_query)}, processing_message]
        yield final_answer_chat, agent_thoughts, generated_code, execution_output, None, None

        # The final result is the generated code from the code_output_agent
        generated_code_raw = str(final_result).strip()

        # Use regex to extract the code block
        code_match = re.search(r"```python\n(.*?)\n```", generated_code_raw, re.DOTALL)
        if code_match:
            generated_code = code_match.group(1).strip()
        else:
            # If no code block is found, assume the entire output is code (or handle as error)
            generated_code = generated_code_raw
            if not generated_code.strip():  # Handle cases where output is empty or just whitespace
                execution_output = "CrewAI process completed, but no code was generated."
                final_answer_chat.append({"role": "assistant", "content": execution_output})
                yield agent_thoughts, final_answer_chat, generated_code, execution_output, generated_plot_path
                return  # Exit the generator

        # Format for Gradio Chatbot (list of dictionaries with 'role' and 'content' keys only)
        code_gen_message = {"role": "assistant", "content": "Code generation complete. See the 'Generated Code' box. Attempting to execute code..."}
        final_answer_chat = [{"role": "user", "content": str(user_query)}, code_gen_message]
        yield final_answer_chat, agent_thoughts, generated_code, execution_output, None, None

        # --- Execute the generated code ---
        plot_file_path = 'plot.png'  # Expected plot file name

        if generated_code:
            try:
                # Write the generated code to a temporary file
                temp_script_path = "generated_script.py"
                with open(temp_script_path, "w") as f:
                    f.write(generated_code)

                # Execute the temporary script using subprocess
                # Use python3 to ensure correct interpreter in Colab
                process = subprocess.run(
                    ["python3", temp_script_path],
                    capture_output=True,
                    text=True,  # Capture stdout and stderr as text
                    check=False  # Don't raise exception for non-zero exit codes
                )
                execution_output = process.stdout + process.stderr

                # Check for specific errors in execution output
                if "KeyError" in execution_output:
                    execution_output += "\n\nPotential Issue: The generated script encountered a KeyError. This might mean the script tried to access a column or data point that wasn't available for the specified stock or timeframe. Please try a different query or timeframe."
                elif "FileNotFoundError: [Errno 2] No such file or directory: 'plot.png'" in execution_output and "Figure(" in execution_output:
                    execution_output += "\n\nPlot Generation Issue: The script seems to have created a plot but did not save it to 'plot.png'. Please ensure the generated code includes `plt.savefig('plot.png')`."
                elif "FileNotFoundError: [Errno 2] No such file or directory: 'plot.png'" in execution_output:
                    execution_output += "\n\nPlot Generation Issue: The script ran, but the plot file was not created. Ensure the generated code includes commands to save the plot to 'plot.png'."

                # Check for the generated plot file
                plot_abs_path = os.path.abspath(plot_file_path)
                if os.path.exists(plot_abs_path):
                    print(f"Plot file found at: {plot_abs_path}")
                    # Return the absolute path to ensure Gradio can find the file
                    generated_plot_path = plot_abs_path
                else:
                    print(f"Plot file not found at expected path: {plot_abs_path}")
                    execution_output += f"\nPlot file '{plot_abs_path}' not found after execution.\n\nMake sure the generated code includes:\n1. `plt.savefig('plot.png')` to save the plot\n2. `plt.close()` to close the figure after saving"

            except Exception as e:
                traceback_str = traceback.format_exc()
                execution_output = f"An error occurred during code execution: {e}\n{traceback_str}"

            finally:
                # Clean up the temporary script file
                if os.path.exists(temp_script_path):
                    os.remove(temp_script_path)

        else:
            execution_output = "No code was generated to execute."

        # Update final answer chat to reflect execution attempt
        execution_complete_msg = "Code execution finished. See 'Execution Output'."
        if generated_plot_path:
            plot_msg = "Plot generated successfully. See the 'Generated Plot' tab below."
            final_answer_chat = [
                {"role": "user", "content": str(user_query)},
                {"role": "assistant", "content": execution_complete_msg},
                {"role": "assistant", "content": plot_msg}
            ]
            yield final_answer_chat, agent_thoughts, generated_code, execution_output, None, generated_plot_path
            return
        else:
            no_plot_msg = "No plot was generated. Make sure your query includes a request for a visualization. Check the 'Execution Output' tab for any errors."
            final_answer_chat = [
                {"role": "user", "content": str(user_query)},
                {"role": "assistant", "content": execution_complete_msg},
                {"role": "assistant", "content": no_plot_msg}
            ]
            yield final_answer_chat, agent_thoughts, generated_code, execution_output, None, None
            return

        yield agent_thoughts, final_answer_chat, generated_code, execution_output, generated_plot_path

    except Exception as e:
        # If an error occurs during CrewAI process, return the error message
        traceback_str = traceback.format_exc()
        agent_thoughts += f"\nAn error occurred during CrewAI process: {e}\n{traceback_str}"
        error_message = f"An error occurred during CrewAI process: {e}"
        final_answer_chat = [
            {"role": "user", "content": str(user_query)},
            {"role": "assistant", "content": error_message}
        ]
        yield final_answer_chat, agent_thoughts, generated_code, execution_output, None, None

    finally:
        # Restore original stdout
        sys.stdout = original_stdout


def create_interface():
    """Create and return the Gradio interface."""
    with gr.Blocks(title="Financial Analytics Agent", theme=gr.themes.Soft()) as interface:
        gr.Markdown("# 📊 Financial Analytics Agent")
        gr.Markdown("Enter your financial query to analyze stock data and generate visualizations.")
        
        with gr.Row():
            with gr.Column(scale=2):
                user_query_input = gr.Textbox(
                    label="Enter your financial query",
                    placeholder="e.g., Show me the stock performance of AAPL and MSFT for the last year",
                    lines=3
                )
                submit_btn = gr.Button("Analyze", variant="primary")
                
                with gr.Accordion("Advanced Options", open=False):
                    gr.Markdown("### Model Settings")
                    model_dropdown = gr.Dropdown(
                        ["gpt-4o", "gpt-4-turbo", "gpt-3.5-turbo"],
                        value="gpt-4o",
                        label="Model"
                    )
                    temperature = gr.Slider(
                        minimum=0.1,
                        maximum=1.0,
                        value=0.7,
                        step=0.1,
                        label="Creativity (Temperature)"
                    )
            
            with gr.Column(scale=3):
                with gr.Tabs():
                    with gr.TabItem("Analysis"):
                        final_answer_chat = gr.Chatbot(
                            label="Analysis Results",
                            height=300,
                            show_copy_button=True,
                            type="messages"  # Explicitly set to use OpenAI-style message format
                        )
                    
                    with gr.TabItem("Agent Thoughts"):
                        agent_thoughts = gr.Textbox(
                            label="Agent Thinking Process",
                            interactive=False,
                            lines=15,
                            max_lines=30,
                            show_copy_button=True
                        )
                    
                    with gr.TabItem("Generated Code"):
                        generated_code = gr.Code(
                            label="Generated Python Code",
                            language="python",
                            interactive=False,
                            lines=15
                        )
                    
                    with gr.TabItem("Execution Output"):
                        execution_output = gr.Textbox(
                            label="Code Execution Output",
                            interactive=False,
                            lines=10,
                            show_copy_button=True
                        )
                
                with gr.Row():
                    with gr.Column():
                        plot_output = gr.Plot(
                            label="Generated Visualization",
                            visible=False
                        )
                        image_output = gr.Image(
                            label="Generated Plot",
                            type="filepath",
                            visible=False
                        )
        
        # Handle form submission
        inputs = [user_query_input, model_dropdown, temperature]
        outputs = [
            final_answer_chat,
            agent_thoughts,
            generated_code,
            execution_output,
            plot_output,
            image_output
        ]
        
        submit_btn.click(
            fn=run_crewai_process,
            inputs=inputs,
            outputs=outputs,
            api_name="analyze"
        )
    
    return interface


def main():
    """Run the Gradio interface."""
    interface = create_interface()
    interface.launch(share=False, server_name="0.0.0.0", server_port=7860)


if __name__ == "__main__":
    main()