File size: 15,994 Bytes
d68e12a b62e4ec d68e12a 9b08ac4 d68e12a 9b08ac4 d68e12a 9b08ac4 d68e12a b78f40d 9b08ac4 d68e12a dcfac75 57d9a46 d68e12a 1740ecf f44bd60 d68e12a f44bd60 d68e12a 9b08ac4 d68e12a f44bd60 9b08ac4 f44bd60 b78f40d f44bd60 9b08ac4 f44bd60 d68e12a b78f40d 9b08ac4 d68e12a bb8f6fb d68e12a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
import os
import io
import sys
import re
import traceback
import subprocess
import gradio as gr
import pandas as pd
from dotenv import load_dotenv
from crewai import Crew, Agent, Task, Process, LLM
from crewai_tools import FileReadTool
from pydantic import BaseModel, Field
# Load environment variables
load_dotenv()
# Get API key from environment variables
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
if not OPENAI_API_KEY:
raise ValueError("OPENAI_API_KEY environment variable not set")
llm = LLM(
model="openai/gpt-4o",
api_key=OPENAI_API_KEY,
temperature=0.7
)
# 1) Query parser agent
query_parser_agent = Agent(
role="Stock Data Analyst",
goal="Extract stock details and fetch required data from this user query: {query}.",
backstory="You are a financial analyst specializing in stock market data retrieval.",
llm=llm,
verbose=True,
memory=True,
)
# Need to define QueryAnalysisOutput class here as it's used by the task
class QueryAnalysisOutput(BaseModel):
"""Structured output for the query analysis task."""
symbols: list[str] = Field(
...,
json_schema_extra={"description": "List of stock ticker symbols (e.g., ['TSLA', 'AAPL'])."}
)
timeframe: str = Field(
...,
json_schema_extra={"description": "Time period (e.g., '1d', '1mo', '1y')."}
)
action: str = Field(
...,
json_schema_extra={"description": "Action to be performed (e.g., 'fetch', 'plot')."}
)
query_parsing_task = Task(
description="Analyze the user query and extract stock details.",
expected_output="A dictionary with keys: 'symbol', 'timeframe', 'action'.",
output_pydantic=QueryAnalysisOutput,
agent=query_parser_agent,
)
# 2) Code writer agent
code_writer_agent = Agent(
role="Senior Python Developer",
goal="Write Python code to visualize stock data.",
backstory="""You are a Senior Python developer specializing in stock market data visualization.
You are also a Pandas, Matplotlib and yfinance library expert.
You are skilled at writing production-ready Python code.
Ensure the code handles potential variations in the DataFrame structure returned by yfinance,
especially for different timeframes or delisted stocks.
Crucially, ensure the generated script saves any generated plot as 'plot.png' using `plt.savefig('plot.png')` before the script ends.""",
llm=llm,
verbose=True,
)
code_writer_task = Task(
description="""Write Python code to visualize stock data based on the inputs from the stock analyst
where you would find stock symbol, timeframe and action.""",
expected_output="A clean and executable Python script file (.py) for stock visualization.",
agent=code_writer_agent,
)
# 3) Code output agent (instead of execution agent)
code_output_agent = Agent(
role="Python Code Presenter",
goal="Present the generated Python code for stock visualization.",
backstory="You are an expert in presenting Python code in a clear and readable format.",
allow_delegation=False, # This agent just presents the code
llm=llm,
verbose=True,
)
code_output_task = Task(
description="""Receive the Python code for stock visualization from the code writer agent and present it.""",
expected_output="The complete Python script for stock visualization.",
agent=code_output_agent,
)
crew = Crew(
agents=[query_parser_agent, code_writer_agent, code_output_agent], # Use code_output_agent
tasks=[query_parsing_task, code_writer_task, code_output_task], # Use code_output_task
process=Process.sequential
)
def run_crewai_process(user_query, model, temperature):
"""
Runs the CrewAI process, captures agent thoughts, gets generated code,
executes the code, and returns results, including plot.
Args:
user_query (str): The user's query for the CrewAI process.
model (str): The model to use for the LLM.
temperature (float): The temperature to use for the LLM.
Yields:
tuple: A tuple containing the agent thoughts (str), the final answer (list of dicts),
the generated code (str), the execution output (str), and plot file path (str or None).
"""
# Create a string buffer to capture stdout
output_buffer = io.StringIO()
original_stdout = sys.stdout
sys.stdout = output_buffer
agent_thoughts = ""
generated_code = ""
execution_output = ""
generated_plot_path = None
final_answer_chat = [{"role": "user", "content": user_query}]
try:
# Initial status update with proper message format
initial_message = {"role": "assistant", "content": "Starting CrewAI process..."}
final_answer_chat = [{"role": "user", "content": str(user_query)}, initial_message]
yield final_answer_chat, agent_thoughts, generated_code, execution_output, None, None
# Run the crew process
final_result = crew.kickoff(inputs={"query": user_query})
# Get the captured CrewAI output (agent thoughts)
agent_thoughts = output_buffer.getvalue()
# Update with processing message
processing_message = {"role": "assistant", "content": "Processing complete. Generating code..."}
final_answer_chat = [{"role": "user", "content": str(user_query)}, processing_message]
yield final_answer_chat, agent_thoughts, generated_code, execution_output, None, None
# The final result is the generated code from the code_output_agent
generated_code_raw = str(final_result).strip()
# Use regex to extract the code block
code_match = re.search(r"```python\n(.*?)\n```", generated_code_raw, re.DOTALL)
if code_match:
generated_code = code_match.group(1).strip()
else:
# If no code block is found, assume the entire output is code (or handle as error)
generated_code = generated_code_raw
if not generated_code.strip(): # Handle cases where output is empty or just whitespace
execution_output = "CrewAI process completed, but no code was generated."
final_answer_chat.append({"role": "assistant", "content": execution_output})
yield agent_thoughts, final_answer_chat, generated_code, execution_output, generated_plot_path
return # Exit the generator
# Format for Gradio Chatbot (list of dictionaries with 'role' and 'content' keys only)
code_gen_message = {"role": "assistant", "content": "Code generation complete. See the 'Generated Code' box. Attempting to execute code..."}
final_answer_chat = [{"role": "user", "content": str(user_query)}, code_gen_message]
yield final_answer_chat, agent_thoughts, generated_code, execution_output, None, None
# --- Execute the generated code ---
plot_file_path = 'plot.png' # Expected plot file name
if generated_code:
try:
# Write the generated code to a temporary file
temp_script_path = "generated_script.py"
with open(temp_script_path, "w") as f:
f.write(generated_code)
# Execute the temporary script using subprocess
# Use python3 to ensure correct interpreter in Colab
process = subprocess.run(
["python3", temp_script_path],
capture_output=True,
text=True, # Capture stdout and stderr as text
check=False # Don't raise exception for non-zero exit codes
)
execution_output = process.stdout + process.stderr
# Check for specific errors in execution output
if "KeyError" in execution_output:
execution_output += "\n\nPotential Issue: The generated script encountered a KeyError. This might mean the script tried to access a column or data point that wasn't available for the specified stock or timeframe. Please try a different query or timeframe."
elif "FileNotFoundError: [Errno 2] No such file or directory: 'plot.png'" in execution_output and "Figure(" in execution_output:
execution_output += "\n\nPlot Generation Issue: The script seems to have created a plot but did not save it to 'plot.png'. Please ensure the generated code includes `plt.savefig('plot.png')`."
elif "FileNotFoundError: [Errno 2] No such file or directory: 'plot.png'" in execution_output:
execution_output += "\n\nPlot Generation Issue: The script ran, but the plot file was not created. Ensure the generated code includes commands to save the plot to 'plot.png'."
# Check for the generated plot file
plot_abs_path = os.path.abspath(plot_file_path)
if os.path.exists(plot_abs_path):
print(f"Plot file found at: {plot_abs_path}")
# Return the absolute path to ensure Gradio can find the file
generated_plot_path = plot_abs_path
else:
print(f"Plot file not found at expected path: {plot_abs_path}")
execution_output += f"\nPlot file '{plot_abs_path}' not found after execution.\n\nMake sure the generated code includes:\n1. `plt.savefig('plot.png')` to save the plot\n2. `plt.close()` to close the figure after saving"
except Exception as e:
traceback_str = traceback.format_exc()
execution_output = f"An error occurred during code execution: {e}\n{traceback_str}"
finally:
# Clean up the temporary script file
if os.path.exists(temp_script_path):
os.remove(temp_script_path)
else:
execution_output = "No code was generated to execute."
# Update final answer chat to reflect execution attempt
execution_complete_msg = "Code execution finished. See 'Execution Output'."
if generated_plot_path:
plot_msg = "Plot generated successfully. See the 'Generated Plot' tab below."
final_answer_chat = [
{"role": "user", "content": str(user_query)},
{"role": "assistant", "content": execution_complete_msg},
{"role": "assistant", "content": plot_msg}
]
yield final_answer_chat, agent_thoughts, generated_code, execution_output, None, generated_plot_path
return
else:
no_plot_msg = "No plot was generated. Make sure your query includes a request for a visualization. Check the 'Execution Output' tab for any errors."
final_answer_chat = [
{"role": "user", "content": str(user_query)},
{"role": "assistant", "content": execution_complete_msg},
{"role": "assistant", "content": no_plot_msg}
]
yield final_answer_chat, agent_thoughts, generated_code, execution_output, None, None
return
yield agent_thoughts, final_answer_chat, generated_code, execution_output, generated_plot_path
except Exception as e:
# If an error occurs during CrewAI process, return the error message
traceback_str = traceback.format_exc()
agent_thoughts += f"\nAn error occurred during CrewAI process: {e}\n{traceback_str}"
error_message = f"An error occurred during CrewAI process: {e}"
final_answer_chat = [
{"role": "user", "content": str(user_query)},
{"role": "assistant", "content": error_message}
]
yield final_answer_chat, agent_thoughts, generated_code, execution_output, None, None
finally:
# Restore original stdout
sys.stdout = original_stdout
def create_interface():
"""Create and return the Gradio interface."""
with gr.Blocks(title="Financial Analytics Agent", theme=gr.themes.Soft()) as interface:
gr.Markdown("# 📊 Financial Analytics Agent")
gr.Markdown("Enter your financial query to analyze stock data and generate visualizations.")
with gr.Row():
with gr.Column(scale=2):
user_query_input = gr.Textbox(
label="Enter your financial query",
placeholder="e.g., Show me the stock performance of AAPL and MSFT for the last year",
lines=3
)
submit_btn = gr.Button("Analyze", variant="primary")
with gr.Accordion("Advanced Options", open=False):
gr.Markdown("### Model Settings")
model_dropdown = gr.Dropdown(
["gpt-4o", "gpt-4-turbo", "gpt-3.5-turbo"],
value="gpt-4o",
label="Model"
)
temperature = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.7,
step=0.1,
label="Creativity (Temperature)"
)
with gr.Column(scale=3):
with gr.Tabs():
with gr.TabItem("Analysis"):
final_answer_chat = gr.Chatbot(
label="Analysis Results",
height=300,
show_copy_button=True,
type="messages" # Explicitly set to use OpenAI-style message format
)
with gr.TabItem("Agent Thoughts"):
agent_thoughts = gr.Textbox(
label="Agent Thinking Process",
interactive=False,
lines=15,
max_lines=30,
show_copy_button=True
)
with gr.TabItem("Generated Code"):
generated_code = gr.Code(
label="Generated Python Code",
language="python",
interactive=False,
lines=15
)
with gr.TabItem("Execution Output"):
execution_output = gr.Textbox(
label="Code Execution Output",
interactive=False,
lines=10,
show_copy_button=True
)
with gr.Row():
with gr.Column():
plot_output = gr.Plot(
label="Generated Visualization",
visible=False
)
image_output = gr.Image(
label="Generated Plot",
type="filepath",
visible=False
)
# Handle form submission
inputs = [user_query_input, model_dropdown, temperature]
outputs = [
final_answer_chat,
agent_thoughts,
generated_code,
execution_output,
plot_output,
image_output
]
submit_btn.click(
fn=run_crewai_process,
inputs=inputs,
outputs=outputs,
api_name="analyze"
)
return interface
def main():
"""Run the Gradio interface."""
interface = create_interface()
interface.launch(share=False, server_name="0.0.0.0", server_port=7860)
if __name__ == "__main__":
main() |