import os import io import sys import re import traceback import subprocess import gradio as gr import pandas as pd from dotenv import load_dotenv from crewai import Crew, Agent, Task, Process, LLM from crewai_tools import FileReadTool from pydantic import BaseModel, Field # Load environment variables load_dotenv() # Get API key from environment variables OPENAI_API_KEY = os.getenv('OPENAI_API_KEY') if not OPENAI_API_KEY: raise ValueError("OPENAI_API_KEY environment variable not set") llm = LLM( model="openai/gpt-4o", api_key=OPENAI_API_KEY, temperature=0.7 ) # 1) Query parser agent query_parser_agent = Agent( role="Stock Data Analyst", goal="Extract stock details and fetch required data from this user query: {query}.", backstory="You are a financial analyst specializing in stock market data retrieval.", llm=llm, verbose=True, memory=True, ) # Need to define QueryAnalysisOutput class here as it's used by the task class QueryAnalysisOutput(BaseModel): """Structured output for the query analysis task.""" symbols: list[str] = Field( ..., json_schema_extra={"description": "List of stock ticker symbols (e.g., ['TSLA', 'AAPL'])."} ) timeframe: str = Field( ..., json_schema_extra={"description": "Time period (e.g., '1d', '1mo', '1y')."} ) action: str = Field( ..., json_schema_extra={"description": "Action to be performed (e.g., 'fetch', 'plot')."} ) query_parsing_task = Task( description="Analyze the user query and extract stock details.", expected_output="A dictionary with keys: 'symbol', 'timeframe', 'action'.", output_pydantic=QueryAnalysisOutput, agent=query_parser_agent, ) # 2) Code writer agent code_writer_agent = Agent( role="Senior Python Developer", goal="Write Python code to visualize stock data.", backstory="""You are a Senior Python developer specializing in stock market data visualization. You are also a Pandas, Matplotlib and yfinance library expert. You are skilled at writing production-ready Python code. Ensure the code handles potential variations in the DataFrame structure returned by yfinance, especially for different timeframes or delisted stocks. Crucially, ensure the generated script saves any generated plot as 'plot.png' using `plt.savefig('plot.png')` before the script ends.""", llm=llm, verbose=True, ) code_writer_task = Task( description="""Write Python code to visualize stock data based on the inputs from the stock analyst where you would find stock symbol, timeframe and action.""", expected_output="A clean and executable Python script file (.py) for stock visualization.", agent=code_writer_agent, ) # 3) Code output agent (instead of execution agent) code_output_agent = Agent( role="Python Code Presenter", goal="Present the generated Python code for stock visualization.", backstory="You are an expert in presenting Python code in a clear and readable format.", allow_delegation=False, # This agent just presents the code llm=llm, verbose=True, ) code_output_task = Task( description="""Receive the Python code for stock visualization from the code writer agent and present it.""", expected_output="The complete Python script for stock visualization.", agent=code_output_agent, ) crew = Crew( agents=[query_parser_agent, code_writer_agent, code_output_agent], # Use code_output_agent tasks=[query_parsing_task, code_writer_task, code_output_task], # Use code_output_task process=Process.sequential ) def run_crewai_process(user_query, model, temperature): """ Runs the CrewAI process, captures agent thoughts, gets generated code, executes the code, and returns results, including plot. Args: user_query (str): The user's query for the CrewAI process. model (str): The model to use for the LLM. temperature (float): The temperature to use for the LLM. Yields: tuple: A tuple containing the agent thoughts (str), the final answer (list of dicts), the generated code (str), the execution output (str), and plot file path (str or None). """ # Create a string buffer to capture stdout output_buffer = io.StringIO() original_stdout = sys.stdout sys.stdout = output_buffer agent_thoughts = "" generated_code = "" execution_output = "" generated_plot_path = None final_answer_chat = [{"role": "user", "content": user_query}] try: # Initial status update with proper message format initial_message = {"role": "assistant", "content": "Starting CrewAI process..."} final_answer_chat = [{"role": "user", "content": str(user_query)}, initial_message] yield final_answer_chat, agent_thoughts, generated_code, execution_output, None, None # Run the crew process final_result = crew.kickoff(inputs={"query": user_query}) # Get the captured CrewAI output (agent thoughts) agent_thoughts = output_buffer.getvalue() # Update with processing message processing_message = {"role": "assistant", "content": "Processing complete. Generating code..."} final_answer_chat = [{"role": "user", "content": str(user_query)}, processing_message] yield final_answer_chat, agent_thoughts, generated_code, execution_output, None, None # The final result is the generated code from the code_output_agent generated_code_raw = str(final_result).strip() # Use regex to extract the code block code_match = re.search(r"```python\n(.*?)\n```", generated_code_raw, re.DOTALL) if code_match: generated_code = code_match.group(1).strip() else: # If no code block is found, assume the entire output is code (or handle as error) generated_code = generated_code_raw if not generated_code.strip(): # Handle cases where output is empty or just whitespace execution_output = "CrewAI process completed, but no code was generated." final_answer_chat.append({"role": "assistant", "content": execution_output}) yield agent_thoughts, final_answer_chat, generated_code, execution_output, generated_plot_path return # Exit the generator # Format for Gradio Chatbot (list of dictionaries with 'role' and 'content' keys only) code_gen_message = {"role": "assistant", "content": "Code generation complete. See the 'Generated Code' box. Attempting to execute code..."} final_answer_chat = [{"role": "user", "content": str(user_query)}, code_gen_message] yield final_answer_chat, agent_thoughts, generated_code, execution_output, None, None # --- Execute the generated code --- plot_file_path = 'plot.png' # Expected plot file name if generated_code: try: # Write the generated code to a temporary file temp_script_path = "generated_script.py" with open(temp_script_path, "w") as f: f.write(generated_code) # Create a debug script that will be executed in a subprocess debug_script = """ import os import sys import traceback try: print("\n" + "="*80) print("STOCK PLOT GENERATION") print("="*80) # Import the stock plot module try: import stock_plot # Generate the plot using the module plot_path = stock_plot.plot_stock_gain(["META"], "ytd") print("\n" + "="*80) print("PLOT GENERATION COMPLETE") print("="*80) if plot_path and os.path.exists(plot_path): file_size = os.path.getsize(plot_path) print(f"✓ Plot generated successfully: {os.path.abspath(plot_path)}") print(f"✓ File size: {file_size} bytes") # Also check for plot.png in the root directory if os.path.exists('plot.png'): print(f"✓ Main plot.png found: {os.path.abspath('plot.png')}") else: print("ℹ️ plot.png not found in root directory") else: print("❌ Failed to generate plot or plot file not found") except ImportError as e: print(f"❌ Error importing stock_plot module: {e}") print("Make sure the stock_plot.py file exists in the same directory.") raise print("\n" + "="*80) print("DIRECTORY CONTENTS") print("="*80) # List all files in the current directory for f in sorted(os.listdir('.')): try: fpath = os.path.join('.', f) if os.path.isfile(fpath): size = os.path.getsize(fpath) print(f" - {f} ({size} bytes)") else: print(f" - {f}/ (dir)") except Exception as e: print(f" - {f} (error: {e})") # Check for generated_plots directory plots_dir = 'generated_plots' if os.path.exists(plots_dir) and os.path.isdir(plots_dir): print(f"\nContents of {plots_dir}/:") try: for f in sorted(os.listdir(plots_dir)): try: fpath = os.path.join(plots_dir, f) if os.path.isfile(fpath): size = os.path.getsize(fpath) print(f" - {f} ({size} bytes)") except Exception as e: print(f" - {f} (error: {e})") except Exception as e: print(f" Error reading {plots_dir}: {e}") except Exception as e: print(f"\n❌ UNEXPECTED ERROR: {str(e)}") print("\nTraceback:") traceback.print_exc() sys.exit(1) """ # Create a simple test plot try: # Create a new figure with a larger size fig, ax = plt.subplots(figsize=(10, 6)) # Generate some sample data x = [1, 2, 3, 4, 5] y = [1, 4, 9, 16, 25] # Create the plot ax.plot(x, y, 'b-', linewidth=2, label='Sample Data') # Add labels and title ax.set_title('Test Plot - Matplotlib Verification', fontsize=14) ax.set_xlabel('X Axis', fontsize=12) ax.set_ylabel('Y Axis', fontsize=12) # Add grid and legend ax.grid(True, linestyle='--', alpha=0.7) ax.legend(fontsize=10) # Adjust layout to prevent label cutoff plt.tight_layout() # Save the test plot test_plot_path = 'test_plot.png' fig.savefig(test_plot_path, dpi=120, bbox_inches='tight') print(f"✓ Test plot saved to: {os.path.abspath(test_plot_path)}") # Close the figure to free memory plt.close(fig) except Exception as e: print(f"❌ Error creating test plot: {e}") print("Traceback:") traceback.print_exc() # Save with different formats and verify test_formats = [ ('test_plot.png', 'PNG'), ('test_plot.jpg', 'JPEG'), ('test_plot.pdf', 'PDF') ] for filename, fmt in test_formats: try: test_fig.savefig(filename, bbox_inches='tight', dpi=100) abs_path = os.path.abspath(filename) file_size = os.path.getsize(filename) print(f"✓ Saved {{fmt}} to: {{abs_path}} ({{file_size}} bytes)") # Verify file is not empty if file_size == 0: print(f" ✗ WARNING: {{fmt}} file is empty!") elif file_size < 1024: # Very small file might be corrupted print(f" ⚠ WARNING: {{fmt}} file is unusually small ({{file_size}} bytes)") except Exception as e: print(f"✗ Failed to save {{fmt}}: {{str(e)}}") # Clean up plt.close(test_fig) # Test 2: Verify file system access print("\n" + "="*80) print("TEST 2: FILE SYSTEM VERIFICATION") print("="*80) # Check if files were created for filename, _ in test_formats: if os.path.exists(filename): try: file_size = os.path.getsize(filename) print(f"✓ Found {{filename}} ({{file_size}} bytes)") # Try to read the file with open(filename, 'rb') as f: header = f.read(4) print(f" File header: {{header[:20].hex()}}...") except Exception as e: print(f"✗ Error reading {{filename}}: {{str(e)}}") else: print(f"✗ File not found: {{filename}}") # Execute the original script with error handling print("\n" + "="*80) print("EXECUTING USER SCRIPT") print("="*80) # Create a safe execution environment try: # Execute the user's code exec_globals = {{'plt': plt, 'pd': __import__('pandas')}} exec_globals.update({{'__builtins__': __builtins__}}) # Execute in a separate namespace to avoid polluting globals user_namespace = {{}} user_code = compile( {generated_code!r}.lstrip('\n').lstrip(' '), '', 'exec', dont_inherit=True, optimize=2 ) exec(user_code, user_namespace, user_namespace) # Ensure any pending plots are drawn plt.ioff() # Save any open figures print("\n" + "="*80) print("SAVING PLOTS") print("="*80) # Get list of all figure numbers fig_nums = plt.get_fignums() print(f"Found {{len(fig_nums)}} open figures") if fig_nums: # Create plots directory if it doesn't exist plots_dir = 'generated_plots' os.makedirs(plots_dir, exist_ok=True) # Save all figures with unique names saved_plots = [] for i, num in enumerate(fig_nums, 1): try: fig = plt.figure(num) plot_name = f'plot_{{i}}.png' plot_path = os.path.abspath(os.path.join(plots_dir, plot_name)) # Save with high DPI and tight layout fig.savefig( plot_path, bbox_inches='tight', dpi=150, facecolor=fig.get_facecolor(), edgecolor='none', transparent=False ) file_size = os.path.getsize(plot_path) print(f"✓ Saved plot {{i}} to: {{plot_path}} ({{file_size}} bytes)") saved_plots.append(plot_path) # If this is the last figure, also save as plot.png in root if i == len(fig_nums): root_plot_path = os.path.abspath('plot.png') fig.savefig(root_plot_path, bbox_inches='tight', dpi=150) print(f"✓ Saved main plot to: {{root_plot_path}}") saved_plots.append(root_plot_path) except Exception as e: print(f"✗ Error saving figure {{num}}: {{str(e)}}") if saved_plots: generated_plot_path = saved_plots[-1] # Use the last saved plot as the main plot print(f"\nSuccessfully saved {{len(saved_plots)}} plot(s)") else: print("ℹ️ No figures were created by the user script") except Exception as e: print(f"\n❌ Error executing user script: {{str(e)}}") print("\nTraceback:") traceback.print_exc() raise # Print final directory contents print("\n" + "="*80) print("FINAL DIRECTORY CONTENTS") print("="*80) for f in os.listdir('.'): fpath = os.path.join('.', f) if os.path.isfile(fpath): print(f" - {{f}} ({{os.path.getsize(fpath)}} bytes)") else: print(f" - {{f}}/ (dir)") print("\n" + "="*80) print("SCRIPT EXECUTION COMPLETE") print("="*80) except Exception as e: print("\n" + "!"*80) print("ERROR DURING EXECUTION") print("!"*80) print(f"Error type: {{type(e).__name__}}") print(f"Error message: {{str(e)}}") print("\nTraceback:") traceback.print_exc() print("\n" + "!"*80 + "\n") raise finally: # Always close all figures to free memory plt.close('all') """ # Write the debug script to a temporary file with open(temp_script_path, "w") as f: f.write(debug_script) # Execute the script process = subprocess.run( ["python3", temp_script_path], capture_output=True, text=True, check=False ) # Capture both stdout and stderr execution_output = process.stdout if process.stderr: execution_output += "\n\n[ERROR] Script execution errors:\n" + process.stderr # Check for common issues in the output if "KeyError" in execution_output: execution_output += "\n\n[HELP] The script encountered a KeyError. This typically happens when trying to access a column that doesn't exist in the stock data.\n" execution_output += "Common causes:\n" execution_output += "1. The stock symbol might not be recognized by yfinance\n" execution_output += "2. The requested time period might not have data (e.g., weekends, holidays)\n" execution_output += "3. The data column names might be different than expected\n\n" execution_output += "Please try a different stock symbol or time period." if "No data" in execution_output or "not found" in execution_output.lower(): execution_output += "\n\n[HELP] No data was returned for the specified stock symbol or time period.\n" execution_output += "Please check the stock symbol and try a different time period." if "Figure(" in execution_output and "plot.png" not in os.listdir(): execution_output += "\n\n[HELP] A plot was created but not saved. Adding save command...\n" # Try to save the plot if it wasn't saved try: import matplotlib.pyplot as plt if plt.get_fignums(): plt.savefig('plot.png') execution_output += "Successfully saved plot to plot.png" generated_plot_path = 'plot.png' plt.close('all') except Exception as e: execution_output += f"Failed to save plot: {str(e)}" except Exception as e: execution_output = f"Error during script execution: {str(e)}\n\n" execution_output += "Please check the generated code for issues or try a different query." # Enhanced plot file checking with more detailed debugging plot_debug_info = [] plot_found = False # Check in current directory first current_dir = os.getcwd() plot_abs_path = os.path.abspath(plot_file_path) # Log directory contents for debugging plot_debug_info.append(f"Current directory: {current_dir}") plot_debug_info.append("Directory contents:" + "\n- " + "\n- ".join(os.listdir('.'))) # Check if plot exists in current directory if os.path.exists(plot_file_path): plot_found = True plot_debug_info.append(f"✅ Plot file found at: {plot_abs_path}") generated_plot_path = plot_file_path else: # Try to find the plot file in subdirectories for root, _, files in os.walk('.'): if plot_file_path in files: found_path = os.path.join(root, plot_file_path) plot_found = True plot_debug_info.append(f"✅ Plot file found at: {os.path.abspath(found_path)}") generated_plot_path = found_path break if not plot_found: plot_debug_info.append(f"❌ Plot file not found at: {plot_abs_path}") plot_debug_info.append("Troubleshooting tips:") plot_debug_info.append("1. Ensure the script calls plt.savefig('plot.png')") plot_debug_info.append("2. Check for any errors in the execution output") plot_debug_info.append("3. Verify the script has write permissions in the current directory") # Add debug info to execution output execution_output += "\n\n[PLOT DEBUG] " + "\n[PLOT DEBUG] ".join(plot_debug_info) if not plot_found: execution_output += f"\n\n[ERROR] Plot file '{plot_file_path}' was not generated. Check the debug information above for details." except Exception as e: traceback_str = traceback.format_exc() execution_output = f"An error occurred during code execution: {e}\n{traceback_str}" finally: # Clean up the temporary script file if os.path.exists(temp_script_path): os.remove(temp_script_path) else: execution_output = "No code was generated to execute." # Update final answer chat to reflect execution attempt execution_complete_msg = "Code execution finished. See 'Execution Output'." if generated_plot_path: plot_msg = "Plot generated successfully. See 'Generated Plot'." final_answer_chat = [ {"role": "user", "content": str(user_query)}, {"role": "assistant", "content": execution_complete_msg}, {"role": "assistant", "content": plot_msg} ] else: no_plot_msg = "No plot was generated. Check the execution output for details." final_answer_chat = [ {"role": "user", "content": str(user_query)}, {"role": "assistant", "content": execution_complete_msg}, {"role": "assistant", "content": no_plot_msg} ] yield agent_thoughts, final_answer_chat, generated_code, execution_output, generated_plot_path except Exception as e: # If an error occurs during CrewAI process, return the error message traceback_str = traceback.format_exc() agent_thoughts += f"\nAn error occurred during CrewAI process: {e}\n{traceback_str}" error_message = f"An error occurred during CrewAI process: {e}" final_answer_chat = [ {"role": "user", "content": str(user_query)}, {"role": "assistant", "content": error_message} ] yield final_answer_chat, agent_thoughts, generated_code, execution_output, None, None finally: # Restore original stdout sys.stdout = original_stdout def create_interface(): """Create and return the Gradio interface.""" with gr.Blocks(title="Financial Analytics Agent", theme=gr.themes.Soft()) as interface: gr.Markdown("# 📊 Financial Analytics Agent") gr.Markdown("Enter your financial query to analyze stock data and generate visualizations.") with gr.Row(): with gr.Column(scale=2): user_query_input = gr.Textbox( label="Enter your financial query", placeholder="e.g., Show me the stock performance of AAPL and MSFT for the last year", lines=3 ) submit_btn = gr.Button("Analyze", variant="primary") with gr.Accordion("Advanced Options", open=False): gr.Markdown("### Model Settings") model_dropdown = gr.Dropdown( ["gpt-4o", "gpt-4-turbo", "gpt-3.5-turbo"], value="gpt-4o", label="Model" ) temperature = gr.Slider( minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Creativity (Temperature)" ) with gr.Column(scale=3): with gr.Tabs(): with gr.TabItem("Analysis"): final_answer_chat = gr.Chatbot( label="Analysis Results", height=300, show_copy_button=True, type="messages" # Explicitly set to use OpenAI-style message format ) with gr.TabItem("Agent Thoughts"): agent_thoughts = gr.Textbox( label="Agent Thinking Process", interactive=False, lines=15, max_lines=30, show_copy_button=True ) with gr.TabItem("Generated Code"): generated_code = gr.Code( label="Generated Python Code", language="python", interactive=False, lines=15 ) with gr.TabItem("Execution Output"): execution_output = gr.Textbox( label="Code Execution Output", interactive=False, lines=10, show_copy_button=True ) with gr.Row(): with gr.Column(): plot_output = gr.Plot( label="Generated Visualization", visible=False ) image_output = gr.Image( label="Generated Plot", type="filepath", visible=False ) # Handle form submission inputs = [user_query_input, model_dropdown, temperature] outputs = [ final_answer_chat, agent_thoughts, generated_code, execution_output, plot_output, image_output ] submit_btn.click( fn=run_crewai_process, inputs=inputs, outputs=outputs, api_name="analyze" ) return interface def main(): """Run the Gradio interface.""" interface = create_interface() interface.launch(share=False, server_name="0.0.0.0", server_port=7860) if __name__ == "__main__": main()