Jeremy Live
API solved v4
02b14fa
raw
history blame
12 kB
import os
import sys
import re
import gradio as gr
import json
import tempfile
import base64
import io
from typing import List, Dict, Any, Optional, Tuple, Union
import logging
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from shared import initialize_llm, setup_database_connection, create_agent
try:
from langchain_core.messages import HumanMessage, AIMessage
LANGCHAIN_AVAILABLE = True
except ImportError:
# Fallback if langchain not available
class HumanMessage:
def __init__(self, content):
self.content = content
class AIMessage:
def __init__(self, content):
self.content = content
LANGCHAIN_AVAILABLE = False
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def create_ui():
"""Create the Gradio UI components."""
# Custom CSS for styling
custom_css = """
.gradio-container {
max-width: 1200px !important;
}
.chat-container {
height: 600px;
overflow-y: auto;
}
.chart-container {
height: 600px;
overflow-y: auto;
}
"""
with gr.Blocks(css=custom_css, title="🤖 SQL Database Assistant") as demo:
gr.Markdown("# 🤖 SQL Database Assistant")
gr.Markdown("Ask questions about your database in natural language!")
with gr.Row():
with gr.Column(scale=2):
chatbot = gr.Chatbot(
label="Chat",
elem_classes="chat-container",
type="messages"
)
with gr.Row():
question_input = gr.Textbox(
label="Ask your question",
placeholder="Type your question here...",
lines=2,
scale=4
)
submit_button = gr.Button("Send", variant="primary", scale=1)
streaming_output_display = gr.Markdown(visible=False)
with gr.Column(scale=1):
chart_display = gr.Plot(
label="Charts",
elem_classes="chart-container"
)
# Status indicators
with gr.Row():
status_indicator = gr.Markdown(
"### ✅ System Status\n- **Database**: Ready\n- **AI Model**: Ready\n- **API**: Available",
elem_id="status"
)
return demo, chatbot, chart_display, question_input, submit_button, streaming_output_display
# ... (resto del código existente sin cambios) ...
def create_application():
"""Create and configure the Gradio application."""
# Create the UI components
demo, chatbot, chart_display, question_input, submit_button, streaming_output_display = create_ui()
# Montar la API Flask en la aplicación Gradio
if os.getenv('SPACE_ID'):
import api
api.app = gr.mount_gradio_app(api.app, demo, path="/")
def user_message(user_input: str, chat_history: List[Dict[str, str]]) -> Tuple[str, List[Dict[str, str]]]:
"""Add user message to chat history (messages format) and clear input."""
if not user_input.strip():
return "", chat_history
logger.info(f"User message: {user_input}")
if chat_history is None:
chat_history = []
# Append user message in messages format
chat_history.append({"role": "user", "content": user_input})
return "", chat_history
async def bot_response(chat_history: List[Dict[str, str]]) -> Tuple[List[Dict[str, str]], Optional[go.Figure]]:
"""Generate bot response for messages-format chat history and return optional chart figure."""
if not chat_history:
return chat_history, None
# Ensure last message is a user turn awaiting assistant reply
last = chat_history[-1]
if not isinstance(last, dict) or last.get("role") != "user" or not last.get("content"):
return chat_history, None
try:
question = last["content"]
logger.info(f"Processing question: {question}")
# Convert prior messages to pair history for stream_agent_response()
pair_history: List[List[str]] = []
i = 0
while i < len(chat_history) - 1:
m1 = chat_history[i]
m2 = chat_history[i + 1] if i + 1 < len(chat_history) else None
if (
isinstance(m1, dict)
and m1.get("role") == "user"
and isinstance(m2, dict)
and m2.get("role") == "assistant"
):
pair_history.append([m1.get("content", ""), m2.get("content", "")])
i += 2
else:
i += 1
# Call the agent for this new user question
assistant_message, chart_fig = await stream_agent_response(question, pair_history)
# Append assistant message back into messages history
chat_history.append({"role": "assistant", "content": assistant_message})
logger.info("Response generation complete")
return chat_history, chart_fig
except Exception as e:
error_msg = f"## ❌ Error\n\nError al procesar la solicitud:\n\n```\n{str(e)}\n```"
logger.error(error_msg, exc_info=True)
# Ensure we add an assistant error message for the UI
chat_history.append({"role": "assistant", "content": error_msg})
return chat_history, None
# Event handlers
with demo:
# Handle form submission
msg_submit = question_input.submit(
fn=user_message,
inputs=[question_input, chatbot],
outputs=[question_input, chatbot],
queue=True
).then(
fn=bot_response,
inputs=[chatbot],
outputs=[chatbot, chart_display],
api_name="ask"
)
# Handle button click
btn_click = submit_button.click(
fn=user_message,
inputs=[question_input, chatbot],
outputs=[question_input, chatbot],
queue=True
).then(
fn=bot_response,
inputs=[chatbot],
outputs=[chatbot, chart_display]
)
return demo
async def stream_agent_response(question: str, chat_history: List[List[str]]) -> Tuple[str, Optional[go.Figure]]:
"""Process a question through the SQL agent and return response with optional chart."""
# Initialize components
llm, llm_error = initialize_llm()
if llm_error:
return f"**LLM Error:** {llm_error}", None
db_connection, db_error = setup_database_connection()
if db_error:
return f"**Database Error:** {db_error}", None
agent, agent_error = create_agent(llm, db_connection)
if agent_error:
return f"**Agent Error:** {agent_error}", None
try:
logger.info(f"Processing question: {question}")
# Prepare the input with chat history
input_data = {"input": question}
if chat_history:
# Format chat history for the agent
formatted_history = []
for human, ai in chat_history:
formatted_history.extend([
HumanMessage(content=human),
AIMessage(content=ai)
])
input_data["chat_history"] = formatted_history
# Execute the agent
response = agent.invoke(input_data)
# Extract the response text
if hasattr(response, 'output') and response.output:
response_text = response.output
elif isinstance(response, dict) and 'output' in response:
response_text = response['output']
elif isinstance(response, str):
response_text = response
else:
response_text = str(response)
# Check for SQL queries in the response
sql_pattern = r'```sql\s*(.*?)\s*```'
sql_matches = re.findall(sql_pattern, response_text, re.DOTALL)
chart_fig = None
if sql_matches:
# Try to execute the SQL and create a chart
try:
sql_query = sql_matches[-1].strip()
logger.info(f"Executing SQL query: {sql_query}")
# Execute the query
result = db_connection.run(sql_query)
if result:
# Convert result to DataFrame
import pandas as pd
if isinstance(result, list) and result:
df = pd.DataFrame(result)
# Determine chart type based on data
if len(df.columns) >= 2:
# Simple bar chart for categorical data
fig = go.Figure()
if len(df) <= 20: # Bar chart for smaller datasets
fig.add_trace(go.Bar(
x=df.iloc[:, 0],
y=df.iloc[:, 1],
name=str(df.columns[1])
))
fig.update_layout(
title=f"{df.columns[0]} vs {df.columns[1]}",
xaxis_title=str(df.columns[0]),
yaxis_title=str(df.columns[1])
)
else: # Line chart for larger datasets
fig.add_trace(go.Scatter(
x=df.iloc[:, 0],
y=df.iloc[:, 1],
mode='lines+markers',
name=str(df.columns[1])
))
fig.update_layout(
title=f"{df.columns[0]} vs {df.columns[1]}",
xaxis_title=str(df.columns[0]),
yaxis_title=str(df.columns[1])
)
chart_fig = fig
except Exception as e:
logger.warning(f"Could not create chart: {e}")
# Continue without chart
return response_text, chart_fig
except Exception as e:
error_msg = f"**Error processing question:** {str(e)}"
logger.error(error_msg, exc_info=True)
return error_msg, None
# Create the application
demo = create_application()
# Configuración para Hugging Face Spaces
def get_app():
"""Obtiene la instancia de la aplicación Gradio para Hugging Face Spaces."""
# Verificar si estamos en un entorno de Hugging Face Spaces
if os.getenv('SPACE_ID'):
# Configuración específica para Spaces
demo.title = "🤖 Asistente de Base de Datos SQL (Demo)"
demo.description = """
Este es un demo del asistente de base de datos SQL.
Para usar la versión completa con conexión a base de datos, clona este espacio y configura las variables de entorno.
"""
return demo
# Para desarrollo local
if __name__ == "__main__":
# Configuración para desarrollo local - versión simplificada para Gradio 5.x
demo.launch(
server_name="0.0.0.0",
server_port=7860,
debug=True,
share=False
)