Jeremy Live
mv2
0444129
raw
history blame
53.2 kB
import os
import sys
import re
import gradio as gr
import json
import tempfile
import base64
import io
from typing import List, Dict, Any, Optional, Tuple, Union
import logging
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
try:
from sqlalchemy import text as sa_text
except Exception:
sa_text = None
try:
# Intentar importar dependencias opcionales
from langchain_community.agent_toolkits import create_sql_agent
from langchain_community.agent_toolkits.sql.toolkit import SQLDatabaseToolkit
from langchain_community.utilities import SQLDatabase
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.agents.agent_types import AgentType
from langchain.memory import ConversationBufferWindowMemory
from langchain_core.messages import AIMessage, HumanMessage, SystemMessage
import pymysql
from dotenv import load_dotenv
DEPENDENCIES_AVAILABLE = True
except ImportError as e:
logger.warning(f"Some dependencies are not available: {e}")
DEPENDENCIES_AVAILABLE = False
# Configuración de logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Configure logging
logging.basicConfig(level=logging.INFO)
def generate_chart(data: Union[Dict, List[Dict], pd.DataFrame],
chart_type: str,
x: str,
y: str = None,
title: str = "",
x_label: str = None,
y_label: str = None):
"""
Generate an interactive Plotly figure from data.
Args:
data: The data to plot (can be a list of dicts or a pandas DataFrame)
chart_type: Type of chart to generate (bar, line, pie, scatter, histogram)
x: Column name for x-axis (names for pie)
y: Column name for y-axis (values for pie)
title: Chart title
x_label: Label for x-axis
y_label: Label for y-axis
Returns:
A Plotly Figure object (interactive) or None on error
"""
try:
# Convert data to DataFrame if it's a list of dicts
if isinstance(data, list):
df = pd.DataFrame(data)
elif isinstance(data, dict):
df = pd.DataFrame([data])
else:
df = data
if not isinstance(df, pd.DataFrame):
return None
# Generate the appropriate chart type
fig = None
if chart_type == 'bar':
fig = px.bar(df, x=x, y=y, title=title)
elif chart_type == 'line':
fig = px.line(df, x=x, y=y, title=title)
elif chart_type == 'pie':
fig = px.pie(df, names=x, values=y, title=title, hole=0)
elif chart_type == 'scatter':
fig = px.scatter(df, x=x, y=y, title=title)
elif chart_type == 'histogram':
fig = px.histogram(df, x=x, title=title)
else:
return None
# Update layout
fig.update_layout(
xaxis_title=x_label or x,
yaxis_title=y_label or (y if y != x else ''),
title=title or f"{chart_type.capitalize()} Chart of {x} vs {y}" if y else f"{chart_type.capitalize()} Chart of {x}",
template="plotly_white",
margin=dict(l=20, r=20, t=40, b=20),
height=400
)
return fig
except Exception as e:
error_msg = f"Error generating chart: {str(e)}"
logger.error(error_msg, exc_info=True)
return None
logger = logging.getLogger(__name__)
def check_environment():
"""Verifica si el entorno está configurado correctamente."""
if not DEPENDENCIES_AVAILABLE:
return False, "Missing required Python packages. Please install them with: pip install -r requirements.txt"
# Verificar si estamos en un entorno con variables de entorno
required_vars = ["DB_USER", "DB_PASSWORD", "DB_HOST", "DB_NAME", "GOOGLE_API_KEY"]
missing_vars = [var for var in required_vars if not os.getenv(var)]
if missing_vars:
return False, f"Missing required environment variables: {', '.join(missing_vars)}"
return True, "Environment is properly configured"
def setup_database_connection():
"""Intenta establecer una conexión a la base de datos."""
if not DEPENDENCIES_AVAILABLE:
return None, "Dependencies not available"
try:
load_dotenv(override=True)
# Debug: Log all environment variables (without sensitive values)
logger.info("Environment variables:")
for key, value in os.environ.items():
if any(s in key.lower() for s in ['pass', 'key', 'secret']):
logger.info(f" {key}: {'*' * 8} (hidden for security)")
else:
logger.info(f" {key}: {value}")
db_user = os.getenv("DB_USER")
db_password = os.getenv("DB_PASSWORD")
db_host = os.getenv("DB_HOST")
db_name = os.getenv("DB_NAME")
# Debug: Log database connection info (without password)
logger.info(f"Database connection attempt - Host: {db_host}, User: {db_user}, DB: {db_name}")
if not all([db_user, db_password, db_host, db_name]):
missing = [var for var, val in [
("DB_USER", db_user),
("DB_PASSWORD", "*" if db_password else ""),
("DB_HOST", db_host),
("DB_NAME", db_name)
] if not val]
logger.error(f"Missing required database configuration: {', '.join(missing)}")
return None, f"Missing database configuration: {', '.join(missing)}"
if not all([db_user, db_password, db_host, db_name]):
return None, "Missing database configuration"
logger.info(f"Connecting to database: {db_user}@{db_host}/{db_name}")
# Probar conexión
connection = pymysql.connect(
host=db_host,
user=db_user,
password=db_password,
database=db_name,
connect_timeout=5,
cursorclass=pymysql.cursors.DictCursor
)
connection.close()
# Si la conexión es exitosa, crear motor SQLAlchemy
db_uri = f"mysql+pymysql://{db_user}:{db_password}@{db_host}/{db_name}"
logger.info("Database connection successful")
return SQLDatabase.from_uri(db_uri), ""
except Exception as e:
error_msg = f"Error connecting to database: {str(e)}"
logger.error(error_msg)
return None, error_msg
def initialize_llm():
"""Inicializa el modelo de lenguaje."""
if not DEPENDENCIES_AVAILABLE:
error_msg = "Dependencies not available. Make sure all required packages are installed."
logger.error(error_msg)
return None, error_msg
google_api_key = os.getenv("GOOGLE_API_KEY")
logger.info(f"GOOGLE_API_KEY found: {'Yes' if google_api_key else 'No'}")
if not google_api_key:
error_msg = "GOOGLE_API_KEY not found in environment variables. Please check your Hugging Face Space secrets."
logger.error(error_msg)
return None, error_msg
try:
logger.info("Initializing Google Generative AI...")
llm = ChatGoogleGenerativeAI(
model="gemini-2.0-flash",
temperature=0,
google_api_key=google_api_key,
convert_system_message_to_human=True # Convert system messages to human messages
)
# Test the model with a simple prompt
test_prompt = "Hello, this is a test."
logger.info(f"Testing model with prompt: {test_prompt}")
test_response = llm.invoke(test_prompt)
logger.info(f"Model test response: {str(test_response)[:100]}...") # Log first 100 chars
logger.info("Google Generative AI initialized successfully")
return llm, ""
except Exception as e:
error_msg = f"Error initializing Google Generative AI: {str(e)}"
logger.error(error_msg, exc_info=True) # Include full stack trace
return None, error_msg
def create_agent():
"""Crea el agente SQL si es posible."""
if not DEPENDENCIES_AVAILABLE:
error_msg = "Dependencies not available. Please check if all required packages are installed."
logger.error(error_msg)
return None, error_msg
logger.info("Starting agent creation process...")
def create_agent(llm, db_connection):
"""Create and return a SQL database agent with conversation memory."""
if not llm:
error_msg = "Cannot create agent: LLM is not available"
logger.error(error_msg)
return None, error_msg
if not db_connection:
error_msg = "Cannot create agent: Database connection is not available"
logger.error(error_msg)
return None, error_msg
try:
logger.info("Creating SQL agent with memory...")
# Create conversation memory
memory = ConversationBufferWindowMemory(
memory_key="chat_history",
k=5, # Keep last 5 message exchanges in memory
return_messages=True,
output_key="output"
)
# Create the database toolkit with additional configuration
toolkit = SQLDatabaseToolkit(
db=db_connection,
llm=llm
)
# Create the agent with memory and more detailed configuration
agent = create_sql_agent(
llm=llm,
toolkit=toolkit,
agent_type=AgentType.OPENAI_FUNCTIONS,
verbose=True,
handle_parsing_errors=True, # Better error handling for parsing
max_iterations=10, # Limit the number of iterations
early_stopping_method="generate", # Stop early if the agent is stuck
memory=memory, # Add memory to the agent
return_intermediate_steps=True # Important for memory to work properly
)
# Test the agent with a simple query
logger.info("Testing agent with a simple query...")
try:
test_query = "SELECT 1"
test_result = agent.run(test_query)
logger.info(f"Agent test query successful: {str(test_result)[:200]}...")
except Exception as e:
logger.warning(f"Agent test query failed (this might be expected): {str(e)}")
# Continue even if test fails, as it might be due to model limitations
logger.info("SQL agent created successfully")
return agent, ""
except Exception as e:
error_msg = f"Error creating SQL agent: {str(e)}"
logger.error(error_msg, exc_info=True)
return None, error_msg
# Inicializar el agente
logger.info("="*50)
logger.info("Starting application initialization...")
logger.info(f"Python version: {sys.version}")
logger.info(f"Current working directory: {os.getcwd()}")
logger.info(f"Files in working directory: {os.listdir()}")
# Verificar las variables de entorno
logger.info("Checking environment variables...")
for var in ["DB_USER", "DB_PASSWORD", "DB_HOST", "DB_NAME", "GOOGLE_API_KEY"]:
logger.info(f"{var}: {'*' * 8 if os.getenv(var) else 'NOT SET'}")
# Initialize components
logger.info("Initializing database connection...")
db_connection, db_error = setup_database_connection()
if db_error:
logger.error(f"Failed to initialize database: {db_error}")
logger.info("Initializing language model...")
llm, llm_error = initialize_llm()
if llm_error:
logger.error(f"Failed to initialize language model: {llm_error}")
logger.info("Initializing agent...")
agent, agent_error = create_agent(llm, db_connection)
db_connected = agent is not None
if agent:
logger.info("Agent initialized successfully")
else:
logger.error(f"Failed to initialize agent: {agent_error}")
logger.info("="*50)
def looks_like_sql(s: str) -> bool:
"""Heuristic to check if a string looks like an executable SQL statement."""
if not s:
return False
s_strip = s.strip().lstrip("-- ")
# common starters
return bool(re.match(r"^(WITH|SELECT|INSERT|UPDATE|DELETE|CREATE|ALTER|DROP|TRUNCATE)\b", s_strip, re.IGNORECASE))
def extract_sql_query(text):
"""Extrae consultas SQL del texto. Acepta solo bloques etiquetados como ```sql
o cadenas que claramente parezcan SQL. Evita ejecutar texto genérico.
"""
if not text:
return None
# Buscar TODOS los bloques en backticks y elegir los que sean 'sql'
for m in re.finditer(r"```(\w+)?\s*(.*?)```", text, re.DOTALL | re.IGNORECASE):
lang = (m.group(1) or '').lower()
body = (m.group(2) or '').strip()
if lang in {"sql", "postgresql", "mysql"} and looks_like_sql(body):
return body
# Si no hay bloques etiquetados, buscar una consulta SQL simple con palabras clave
simple = re.search(r"(WITH|SELECT|INSERT|UPDATE|DELETE|CREATE|ALTER|DROP|TRUNCATE)[\s\S]*?;", text, re.IGNORECASE)
if simple:
candidate = simple.group(0).strip()
if looks_like_sql(candidate):
return candidate
return None
def sanitize_sql_query_text(query: str) -> str:
"""Normalize LLM-produced SQL text to be executable by MariaDB/MySQL.
- Converts literal escape sequences ("\\n", "\\t") to spaces
- Collapses excessive whitespace
- Strips surrounding code block backticks if any
"""
if not isinstance(query, str):
return query
q = query.strip().strip('`')
# Replace escaped newlines/tabs that sometimes appear in model outputs
q = q.replace("\\n", " ").replace("\\t", " ")
# Collapse whitespace to single spaces
q = re.sub(r"\s+", " ", q)
return q
def execute_sql_query(query, db_connection):
"""Ejecuta una consulta SQL y devuelve los resultados como una cadena."""
if not db_connection:
return "Error: No hay conexión a la base de datos"
try:
with db_connection._engine.connect() as connection:
# Ensure SQLAlchemy receives a SQL expression
if sa_text is not None and isinstance(query, str):
result = connection.execute(sa_text(sanitize_sql_query_text(query)))
else:
result = connection.execute(query)
rows = result.fetchall()
# Convertir los resultados a un formato legible
if not rows:
return "La consulta no devolvió resultados"
# Si es un solo resultado, devolverlo directamente
if len(rows) == 1 and len(rows[0]) == 1:
return str(rows[0][0])
# Si hay múltiples filas, formatear como tabla markdown robusta
try:
# Prefer row mapping if available
headers = []
try:
headers = list(rows[0]._mapping.keys()) # SQLAlchemy 2.x
except Exception:
try:
headers = list(result.keys()) # Fallback
except Exception:
# As last resort, numeric headers
headers = [str(i) for i in range(len(rows[0]))]
# Build markdown
lines = []
header_line = "| " + " | ".join(headers) + " |"
sep_line = "|" + "|".join([" --- " for _ in headers]) + "|"
lines.append(header_line)
lines.append(sep_line)
for r in rows:
try:
mapping = dict(getattr(r, "_mapping", {}))
except Exception:
mapping = {}
values = []
for h in headers:
if mapping:
v = mapping.get(h, "")
else:
# Tuple-style row
idx = headers.index(h)
try:
v = r[idx]
except Exception:
v = ""
values.append(str(v))
lines.append("| " + " | ".join(values) + " |")
return "\n".join(lines)
except Exception:
# Formato markdown básico incluso si no hay metadatos de columnas
try:
num_cols = len(rows[0]) if rows and hasattr(rows[0], "__len__") else 0
headers = [f"col{i+1}" for i in range(num_cols)] or ["value"]
lines = []
header_line = "| " + " | ".join(headers) + " |"
sep_line = "|" + "|".join([" --- " for _ in headers]) + "|"
lines.append(header_line)
lines.append(sep_line)
for r in rows:
vals = [str(v) for v in (list(r) if hasattr(r, "__iter__") and not isinstance(r, (str, bytes)) else [r])]
lines.append("| " + " | ".join(vals) + " |")
return "\n".join(lines)
except Exception:
return "\n".join([str(row) for row in rows])
except Exception as e:
return f"Error ejecutando la consulta: {str(e)}"
def parse_markdown_table(markdown_text: str) -> Optional[List[Dict[str, Any]]]:
"""Parse a GitHub-style markdown table string to a list of dicts.
Returns None if parsing fails or no rows are found.
"""
if not isinstance(markdown_text, str):
return None
try:
# Keep only table lines with pipes and drop the separator row
lines = [
line.strip() for line in markdown_text.split('\n')
if line.strip() and '|' in line and set(line.strip()) != {'-','|',':',' '}
]
if len(lines) < 2:
return None
# First line is header
columns = [col.strip() for col in lines[0].split('|')[1:-1]]
data: List[Dict[str, Any]] = []
for line in lines[1:]:
values = [val.strip() for val in line.split('|')[1:-1]]
if len(values) != len(columns):
continue
data.append(dict(zip(columns, values)))
return data if data else None
except Exception:
return None
def parse_label_value_pairs(text: str) -> List[Dict[str, Any]]:
"""Extract generic label-number pairs from free text.
Supports formats like:
- LABEL: 123
- LABEL (123)
- ('LABEL', 123)
Returns a list of {label, value}.
"""
if not isinstance(text, str) or not text.strip():
return []
pairs: List[Dict[str, Any]] = []
lines = [l.strip() for l in text.split('\n') if l.strip()]
# 1) Tuple-like: ('LABEL', 123)
tuple_re = re.compile(r"\(\s*['\"]?\s*([^'\",()]+?)\s*['\"]?\s*,\s*([0-9][0-9.,]*)\s*\)")
# 2) Colon separated: LABEL: 123
colon_re = re.compile(r"^(.+?):\s*([0-9][0-9.,]*)$")
# 3) Parenthesis after label: LABEL (123)
paren_re = re.compile(r"^(.+?)\s*\(\s*([0-9][0-9.,]*)\s*\)$")
for l in lines:
m = tuple_re.search(l)
if m:
label = re.sub(r"[*_`]+", "", m.group(1)).strip()
try:
value = float(m.group(2).replace(',', ''))
pairs.append({"label": label, "value": value})
continue
except Exception:
pass
m = colon_re.match(l)
if m:
label = re.sub(r"[*_`]+", "", m.group(1)).strip()
try:
value = float(m.group(2).replace(',', ''))
pairs.append({"label": label, "value": value})
continue
except Exception:
pass
m = paren_re.match(l)
if m:
label = re.sub(r"[*_`]+", "", m.group(1)).strip()
try:
value = float(m.group(2).replace(',', ''))
pairs.append({"label": label, "value": value})
continue
except Exception:
pass
return pairs
def generate_plot(data, x_col, y_col, title, x_label, y_label):
"""Generate a plot from data and return the file path."""
plt.figure(figsize=(10, 6))
plt.bar(data[x_col], data[y_col])
plt.title(title)
plt.xlabel(x_label)
plt.ylabel(y_label)
plt.xticks(rotation=45)
plt.tight_layout()
# Save to a temporary file
temp_dir = tempfile.mkdtemp()
plot_path = os.path.join(temp_dir, "plot.png")
plt.savefig(plot_path)
plt.close()
return plot_path
def convert_to_messages_format(chat_history):
"""Convert chat history to the format expected by Gradio 5.x"""
if not chat_history:
return []
messages = []
# If the first element is a list, assume it's in the old format
if isinstance(chat_history[0], list):
for msg in chat_history:
if isinstance(msg, list) and len(msg) == 2:
# Format: [user_msg, bot_msg]
user_msg, bot_msg = msg
if user_msg:
messages.append({"role": "user", "content": user_msg})
if bot_msg:
messages.append({"role": "assistant", "content": bot_msg})
else:
# Assume it's already in the correct format or can be used as is
for msg in chat_history:
if isinstance(msg, dict) and "role" in msg and "content" in msg:
messages.append(msg)
elif isinstance(msg, str):
# If it's a string, assume it's a user message
messages.append({"role": "user", "content": msg})
return messages
async def stream_agent_response(question: str, chat_history: List[List[str]]) -> Tuple[str, Optional["go.Figure"], Optional[Dict[str, Any]]]:
"""Procesa la pregunta del usuario y devuelve (respuesta, figura, chart_state).
chart_state schema: {"data": List[Dict], "x_col": str, "y_col": str, "title": str, "chart_type": str}
"""
global agent # Make sure we can modify the agent's memory
# Initialize response
response_text = ""
chart_fig = None
chart_state: Optional[Dict[str, Any]] = None
messages = []
# Add previous chat history in the correct format for the agent
for msg_pair in chat_history:
if len(msg_pair) >= 1 and msg_pair[0]: # User message
messages.append(HumanMessage(content=msg_pair[0]))
if len(msg_pair) >= 2 and msg_pair[1]: # Assistant message
messages.append(AIMessage(content=msg_pair[1]))
# Add current user's question
user_message = HumanMessage(content=question)
messages.append(user_message)
if not agent:
error_msg = (
"## ⚠️ Error: Agente no inicializado\n\n"
"No se pudo inicializar el agente de base de datos. Por favor, verifica que:\n"
"1. Todas las variables de entorno estén configuradas correctamente\n"
"2. La base de datos esté accesible\n"
f"3. El modelo de lenguaje esté disponible\n\n"
f"Error: {agent_error}"
)
return error_msg, None, None
# Update the agent's memory with the full conversation history
try:
# Hydrate agent memory only if it's empty; do NOT clear existing memory.
if hasattr(agent, 'memory') and agent.memory is not None:
try:
existing_messages = getattr(getattr(agent.memory, 'chat_memory', None), 'messages', []) or []
except Exception:
existing_messages = []
if not existing_messages and chat_history:
for pair in chat_history:
try:
user_prev, bot_prev = pair[0], pair[1] if len(pair) > 1 else ""
agent.memory.save_context({"input": user_prev}, {"output": bot_prev})
except Exception:
continue
except Exception as e:
logger.error(f"Error updating agent memory: {str(e)}", exc_info=True)
try:
# Add empty assistant message that will be updated
assistant_message = {"role": "assistant", "content": ""}
messages.append(assistant_message)
# Execute the agent with proper error handling
try:
# Let the agent use its memory; don't pass raw chat_history
response = await agent.ainvoke({"input": question})
logger.info(f"Agent response type: {type(response)}")
logger.info(f"Agent response content: {str(response)[:500]}...")
# Handle different response formats
if hasattr(response, 'output') and response.output:
response_text = response.output
elif isinstance(response, str):
response_text = response
elif hasattr(response, 'get') and callable(response.get) and 'output' in response:
response_text = response['output']
else:
response_text = str(response)
logger.info(f"Extracted response text: {response_text[:200]}...")
# 1) Try to parse label/number pairs from the agent's answer directly
parsed_pairs = parse_label_value_pairs(response_text)
q_lower = question.lower()
desired_type = 'pie' if any(k in q_lower for k in ["gráfico circular", "grafico circular", "pie", "pastel"]) else 'bar'
if chart_fig is None and len(parsed_pairs) >= 2:
chart_fig = generate_chart(parsed_pairs, desired_type, 'label', 'value', 'Distribución')
if chart_fig is not None:
chart_state = {"data": parsed_pairs, "x_col": "label", "y_col": "value", "title": "Distribución", "chart_type": desired_type}
# 2) If not, execute any SQL present in the response once and chart it
if chart_fig is None:
sql_query = extract_sql_query(response_text)
if sql_query and looks_like_sql(sql_query):
logger.info(f"Detected SQL query: {sql_query}")
db_connection, _ = setup_database_connection()
if db_connection:
query_result = execute_sql_query(sanitize_sql_query_text(sql_query), db_connection)
response_text += f"\n\n### 🔍 Resultado de la consulta:\n```sql\n{sql_query}\n```\n\n{query_result}"
data_list = parse_markdown_table(query_result) if isinstance(query_result, str) else None
if data_list:
columns = list(data_list[0].keys())
x_col = columns[0]
y_col = None
for col in columns[1:]:
try:
pd.to_numeric(data_list[0][col])
y_col = col
break
except Exception:
continue
if y_col:
chart_fig = generate_chart(data_list, desired_type, x_col, y_col, f"{y_col} por {x_col}")
if chart_fig is not None:
chart_state = {"data": data_list, "x_col": x_col, "y_col": y_col, "title": f"{y_col} por {x_col}", "chart_type": desired_type}
else:
tuples = parse_label_value_pairs(str(query_result))
if len(tuples) >= 2:
chart_fig = generate_chart(tuples, desired_type, 'label', 'value', 'Distribución')
if chart_fig is not None:
chart_state = {"data": tuples, "x_col": "label", "y_col": "value", "title": "Distribución", "chart_type": desired_type}
else:
response_text += "\n\n⚠️ No se pudo conectar a la base de datos para ejecutar la consulta."
# If we still have no chart but the user clearly wants one,
# try a second pass to get ONLY a SQL query from the agent and execute it.
if chart_fig is None:
q_lower = question.lower()
wants_chart = any(k in q_lower for k in ["gráfico", "grafico", "chart", "graph", "pastel", "pie"])
if wants_chart:
try:
logger.info("Second pass: asking agent for ONLY SQL query in fenced block.")
sql_only_prompt = (
"Devuelve SOLO la consulta SQL en un bloque ```sql``` para responder a: "
f"{question}. No incluyas explicación ni texto adicional."
)
sql_only_resp = await agent.ainvoke({"input": sql_only_prompt})
sql_only_text = str(sql_only_resp)
sql_query2 = extract_sql_query(sql_only_text)
if sql_query2 and looks_like_sql(sql_query2):
logger.info(f"Second pass SQL detected: {sql_query2}")
db_connection, _ = setup_database_connection()
if db_connection:
query_result = execute_sql_query(sanitize_sql_query_text(sql_query2), db_connection)
# Append query and result to response_text for transparency
response_text += f"\n\n### 🔍 Resultado de la consulta (2ª pasada):\n```sql\n{sql_query2}\n```\n\n{query_result}"
# Try robust markdown table parse
data_list = parse_markdown_table(query_result) if isinstance(query_result, str) else None
if data_list:
# Infer columns
columns = list(data_list[0].keys())
x_col = columns[0]
y_col = None
for col in columns[1:]:
try:
pd.to_numeric(data_list[0][col])
y_col = col
break
except Exception:
continue
if y_col:
desired_type = 'pie' if any(k in q_lower for k in ["gráfico circular", "grafico circular", "pie", "pastel"]) else 'bar'
chart_fig = generate_chart(
data=data_list,
chart_type=desired_type,
x=x_col,
y=y_col,
title=f"{y_col} por {x_col}"
)
if chart_fig is not None:
logger.info("Chart generated from second-pass SQL execution (markdown parse).")
chart_state = {"data": data_list, "x_col": x_col, "y_col": y_col, "title": f"{y_col} por {x_col}", "chart_type": desired_type}
else:
# If no table, try parsing tuple-like rows shown as lines: ('LABEL', N)
tuple_lines = [l.strip() for l in str(query_result).split('\n') if l.strip()]
parsed = []
for l in tuple_lines:
m = re.match(r"^\(\'?\s*([^',]+?)\s*\'?,\s*(\d+(?:\.\d+)?)\)$", l)
if m:
label = m.group(1).strip()
try:
value = float(m.group(2))
except Exception:
continue
parsed.append({"label": label, "value": value})
if len(parsed) >= 2:
desired_type = 'pie' if any(k in q_lower for k in ["gráfico circular", "grafico circular", "pie", "pastel"]) else 'bar'
chart_fig = generate_chart(
data=parsed,
chart_type=desired_type,
x="label",
y="value",
title="Distribución"
)
if chart_fig is not None:
logger.info("Chart generated from tuple-like SQL output parse.")
chart_state = {"data": parsed, "x_col": "label", "y_col": "value", "title": "Distribución", "chart_type": desired_type}
else:
logger.info("No DB connection on second pass; skipping.")
except Exception as e:
logger.error(f"Second-pass SQL synthesis failed: {e}")
# Fallback: if user asked for a chart (e.g., pie) and we didn't get SQL or chart yet,
# parse the most recent assistant text for lines like "LABEL: NUMBER" (bulleted or plain).
if chart_fig is None:
q_lower = question.lower()
wants_chart = any(k in q_lower for k in ["gráfico", "grafico", "chart", "graph", "pastel", "pie"])
if wants_chart:
# Find the most recent assistant message with usable numeric pairs
candidate_text = ""
if chat_history:
for pair in reversed(chat_history):
if len(pair) >= 2 and isinstance(pair[1], str) and pair[1].strip():
candidate_text = pair[1]
break
# Also consider current response_text as a data source
if not candidate_text and isinstance(response_text, str) and response_text.strip():
candidate_text = response_text
if candidate_text:
# Support colon-number pairs even when they are in one paragraph
raw_lines = re.split(r"\n|,\s+(?=[^,]+:\s*\d)" , candidate_text)
# Normalize lines: strip bullets and markdown symbols
norm_lines = []
for l in raw_lines:
s = l.strip()
if not s:
continue
s = s.lstrip("•*-\t ")
# Remove surrounding markdown emphasis from labels later
norm_lines.append(s)
data = []
for l in norm_lines:
# Accept patterns like "**LABEL**: 123" or "LABEL: 1,234"
m = re.match(r"^(.+?):\s*([0-9][0-9.,]*)$", l)
if m:
label = m.group(1).strip()
# Strip common markdown emphasis
label = re.sub(r"[*_`]+", "", label).strip()
try:
val = float(m.group(2).replace(',', ''))
except Exception:
continue
data.append({"label": label, "value": val})
logger.info(f"Fallback parse from text: extracted {len(data)} items for potential chart")
if len(data) >= 2:
desired_type = 'pie' if any(k in q_lower for k in ["gráfico circular", "grafico circular", "pie", "pastel"]) else 'bar'
chart_fig = generate_chart(
data=data,
chart_type=desired_type,
x="label",
y="value",
title="Distribución"
)
if chart_fig is not None:
logger.info(f"Chart generated from text fallback: type={desired_type}, items={len(data)}")
chart_state = {"data": data, "x_col": "label", "y_col": "value", "title": "Distribución", "chart_type": desired_type}
# Update the assistant's message with the response
assistant_message["content"] = response_text
except Exception as e:
error_msg = f"Error al ejecutar el agente: {str(e)}"
logger.error(error_msg, exc_info=True)
assistant_message["content"] = f"## ❌ Error\n\n{error_msg}"
# Return the message in the correct format for Gradio Chatbot
# Format: list of tuples where each tuple is (user_msg, bot_msg)
# For a single response, we return [(None, message)]
message_content = ""
if isinstance(assistant_message, dict) and "content" in assistant_message:
message_content = assistant_message["content"]
elif isinstance(assistant_message, str):
message_content = assistant_message
else:
message_content = str(assistant_message)
# Return the assistant's response and an optional interactive chart figure
if chart_fig is None:
logger.info("No chart generated for this turn.")
else:
logger.info("Returning a chart figure to UI.")
return message_content, chart_fig, chart_state
except Exception as e:
error_msg = f"## ❌ Error\n\nOcurrió un error al procesar tu solicitud:\n\n```\n{str(e)}\n```"
logger.error(f"Error in stream_agent_response: {str(e)}", exc_info=True)
# Return error message and no chart
return error_msg, None, None
# Custom CSS for the app
custom_css = """
.gradio-container {
max-width: 1200px !important;
margin: 0 auto !important;
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen, Ubuntu, Cantarell, sans-serif;
}
#chatbot {
min-height: 500px;
border: 1px solid #e0e0e0;
border-radius: 8px;
margin-bottom: 20px;
padding: 20px;
background-color: #f9f9f9;
}
.user-message, .bot-message {
padding: 12px 16px;
border-radius: 18px;
margin: 8px 0;
max-width: 80%;
line-height: 1.5;
}
.user-message {
background-color: #007bff;
color: white;
margin-left: auto;
border-bottom-right-radius: 4px;
}
.bot-message {
background-color: #f1f1f1;
color: #333;
margin-right: auto;
border-bottom-left-radius: 4px;
}
#question-input textarea {
min-height: 50px !important;
border-radius: 8px !important;
padding: 12px !important;
font-size: 16px !important;
}
#send-button {
height: 100%;
background-color: #007bff !important;
color: white !important;
border: none !important;
border-radius: 8px !important;
font-weight: 500 !important;
transition: background-color 0.2s !important;
}
#send-button:hover {
background-color: #0056b3 !important;
}
.status-message {
text-align: center;
color: #666;
font-style: italic;
margin: 10px 0;
}
"""
def create_ui():
"""Crea y devuelve los componentes de la interfaz de usuario de Gradio."""
# Verificar el estado del entorno
env_ok, env_message = check_environment()
# Crear el tema personalizado
theme = gr.themes.Soft(
primary_hue="blue",
secondary_hue="indigo",
neutral_hue="slate"
)
with gr.Blocks(
css=custom_css,
title="Asistente de Base de Datos SQL",
theme=theme
) as demo:
# Encabezado
gr.Markdown("""
# 🤖 Asistente de Base de Datos SQL
Haz preguntas en lenguaje natural sobre tu base de datos y obtén resultados de consultas SQL.
""")
# Mensaje de estado
if not env_ok:
gr.Warning("⚠️ " + env_message)
# Create the chat interface
with gr.Row():
chatbot = gr.Chatbot(
value=[],
elem_id="chatbot",
type="messages", # migrate to messages format to avoid deprecation
avatar_images=(
None,
(os.path.join(os.path.dirname(__file__), "logo.svg")),
),
height=600,
render_markdown=True, # Enable markdown rendering
show_label=False,
show_share_button=False,
container=True,
layout="panel" # Better layout for messages
)
# Chart display area (interactive Plotly figure)
chart_display = gr.Plot(
label="📊 Visualización",
)
# Input area
with gr.Row():
question_input = gr.Textbox(
label="",
placeholder="Escribe tu pregunta aquí...",
container=False,
scale=5,
min_width=300,
max_lines=3,
autofocus=True,
elem_id="question-input"
)
submit_button = gr.Button(
"Enviar",
variant="primary",
min_width=100,
scale=1,
elem_id="send-button"
)
# System status
with gr.Accordion("ℹ️ Estado del sistema", open=not env_ok):
if not DEPENDENCIES_AVAILABLE:
gr.Markdown("""
## ❌ Dependencias faltantes
Para ejecutar esta aplicación localmente, necesitas instalar las dependencias:
```bash
pip install -r requirements.txt
```
""")
else:
if not agent:
gr.Markdown(f"""
## ⚠️ Configuración incompleta
No se pudo inicializar el agente de base de datos. Por favor, verifica que:
1. Todas las variables de entorno estén configuradas correctamente
2. La base de datos esté accesible
3. La API de Google Gemini esté configurada
**Error:** {agent_error if agent_error else 'No se pudo determinar el error'}
### Configuración local
Crea un archivo `.env` en la raíz del proyecto con las siguientes variables:
```
DB_USER=tu_usuario
DB_PASSWORD=tu_contraseña
DB_HOST=tu_servidor
DB_NAME=tu_base_de_datos
GOOGLE_API_KEY=tu_api_key_de_google
```
""")
else:
if os.getenv('SPACE_ID'):
# Modo demo en Hugging Face Spaces
gr.Markdown("""
## 🚀 Modo Demo
Esta es una demostración del asistente de base de datos SQL. Para usar la versión completa con conexión a base de datos:
1. Clona este espacio en tu cuenta de Hugging Face
2. Configura las variables de entorno en la configuración del espacio:
- `DB_USER`: Tu usuario de base de datos
- `DB_PASSWORD`: Tu contraseña de base de datos
- `DB_HOST`: La dirección del servidor de base de datos
- `DB_NAME`: El nombre de la base de datos
- `GOOGLE_API_KEY`: Tu clave de API de Google Gemini
**Nota:** Actualmente estás en modo de solo demostración.
""")
else:
gr.Markdown("""
## ✅ Sistema listo
El asistente está listo para responder tus preguntas sobre la base de datos.
""")
# Hidden component for streaming output
streaming_output_display = gr.Textbox(visible=False)
# Session state to persist last chart data for follow-ups
chart_state = gr.State(value=None)
return demo, chatbot, chart_display, question_input, submit_button, streaming_output_display, chart_state
def create_application():
"""Create and configure the Gradio application."""
# Create the UI components
demo, chatbot, chart_display, question_input, submit_button, streaming_output_display, chart_state = create_ui()
def user_message(user_input: str, chat_history: List[Dict[str, str]]) -> Tuple[str, List[Dict[str, str]]]:
"""Add user message to chat history (messages format) and clear input."""
if not user_input.strip():
return "", chat_history
logger.info(f"User message: {user_input}")
if chat_history is None:
chat_history = []
# Append user message in messages format
chat_history.append({"role": "user", "content": user_input})
return "", chat_history
async def bot_response(chat_history: List[Dict[str, str]], chart_state_value: Optional[Dict[str, Any]]) -> Tuple[List[Dict[str, str]], Optional[go.Figure], Optional[Dict[str, Any]]]:
"""Generate bot response and optional chart figure using messages-format chat history.
Also accepts and returns chart_state (dict) to support follow-up prompts like
'muestra los mismos datos en barras'.
"""
if not chat_history:
return chat_history, None, chart_state_value
# Ensure last message is a user turn awaiting assistant reply
last = chat_history[-1]
if not isinstance(last, dict) or last.get("role") != "user" or not last.get("content"):
return chat_history, None
try:
question = last["content"]
logger.info(f"Processing question: {question}")
# Detect quick follow-up re-plot using the same data
ql = question.lower()
wants_reuse = any(kw in ql for kw in [
"mismos datos", "estos mismos", "los mismos", "igual data", "misma data", "con los mismos"
])
# Determine requested chart type if any
desired_type = None
if any(k in ql for k in ["barras", "bar", "columnas"]):
desired_type = "bar"
elif any(k in ql for k in ["línea", "linea", "line"]):
desired_type = "line"
elif any(k in ql for k in ["pastel", "pie", "circular"]):
desired_type = "pie"
elif "scatter" in ql or "dispersión" in ql or "dispersion" in ql:
desired_type = "scatter"
elif "histograma" in ql or "histogram" in ql:
desired_type = "histogram"
if wants_reuse and chart_state_value and isinstance(chart_state_value, dict) and chart_state_value.get("data"):
# Re-plot with same data using requested type (or keep previous if not specified)
new_type = desired_type or chart_state_value.get("chart_type", "bar")
fig = generate_chart(
data=chart_state_value.get("data"),
chart_type=new_type,
x=chart_state_value.get("x_col", "label"),
y=chart_state_value.get("y_col", "value"),
title=chart_state_value.get("title", "Distribución")
)
if fig is not None:
friendly = f"He actualizado la visualización a {('gráfico de ' + new_type) if new_type != 'pie' else 'gráfico circular'} usando los mismos datos."
chat_history.append({"role": "assistant", "content": friendly})
# Save new type in state
chart_state_value = {
**chart_state_value,
"chart_type": new_type,
}
return chat_history, fig, chart_state_value
# Convert prior messages to pair history for stream_agent_response()
pair_history: List[List[str]] = []
i = 0
while i < len(chat_history) - 1:
m1 = chat_history[i]
m2 = chat_history[i + 1] if i + 1 < len(chat_history) else None
if (
isinstance(m1, dict)
and m1.get("role") == "user"
and isinstance(m2, dict)
and m2.get("role") == "assistant"
):
pair_history.append([m1.get("content", ""), m2.get("content", "")])
i += 2
else:
i += 1
# Call the agent for this new user question
assistant_message, chart_fig, new_state = await stream_agent_response(question, pair_history)
# Append assistant message back into messages history
chat_history.append({"role": "assistant", "content": assistant_message})
# Update chart_state if provided by the agent path
chart_state_value = new_state if new_state is not None else chart_state_value
logger.info("Response generation complete")
return chat_history, chart_fig, chart_state_value
except Exception as e:
error_msg = f"## ❌ Error\n\nError al procesar la solicitud:\n\n```\n{str(e)}\n```"
logger.error(error_msg, exc_info=True)
# Ensure we add an assistant error message for the UI
chat_history.append({"role": "assistant", "content": error_msg})
return chat_history, None, chart_state_value
# Event handlers
with demo:
# Handle form submission
msg_submit = question_input.submit(
fn=user_message,
inputs=[question_input, chatbot],
outputs=[question_input, chatbot],
queue=True
).then(
fn=bot_response,
inputs=[chatbot, chart_state],
outputs=[chatbot, chart_display, chart_state],
api_name="ask"
)
# Handle button click
btn_click = submit_button.click(
fn=user_message,
inputs=[question_input, chatbot],
outputs=[question_input, chatbot],
queue=True
).then(
fn=bot_response,
inputs=[chatbot, chart_state],
outputs=[chatbot, chart_display, chart_state]
)
return demo
# Create the application
demo = create_application()
# Configuración para Hugging Face Spaces
def get_app():
"""Obtiene la instancia de la aplicación Gradio para Hugging Face Spaces."""
# Verificar si estamos en un entorno de Hugging Face Spaces
if os.getenv('SPACE_ID'):
# Configuración específica para Spaces
demo.title = "🤖 Asistente de Base de Datos SQL (Demo)"
demo.description = """
Este es un demo del asistente de base de datos SQL.
Para usar la versión completa con conexión a base de datos, clona este espacio y configura las variables de entorno.
"""
return demo
# Para desarrollo local
if __name__ == "__main__":
# Configuración para desarrollo local - versión simplificada para Gradio 5.x
demo.launch(
server_name="0.0.0.0",
server_port=7860,
debug=True,
share=False
)