Jeremy Live
v3
55ff70d
raw
history blame
35.2 kB
import os
import sys
import re
import gradio as gr
import json
import tempfile
import base64
import io
from typing import List, Dict, Any, Optional, Tuple, Union
import logging
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
try:
# Intentar importar dependencias opcionales
from langchain_community.agent_toolkits import create_sql_agent
from langchain_community.agent_toolkits.sql.toolkit import SQLDatabaseToolkit
from langchain_community.utilities import SQLDatabase
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.agents.agent_types import AgentType
from langchain.memory import ConversationBufferWindowMemory
from langchain_core.messages import AIMessage, HumanMessage, SystemMessage
import pymysql
from dotenv import load_dotenv
DEPENDENCIES_AVAILABLE = True
except ImportError as e:
logger.warning(f"Some dependencies are not available: {e}")
DEPENDENCIES_AVAILABLE = False
# Configuración de logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Configure logging
logging.basicConfig(level=logging.INFO)
def generate_chart(data: Union[Dict, List[Dict], pd.DataFrame],
chart_type: str,
x: str,
y: str = None,
title: str = "",
x_label: str = None,
y_label: str = None) -> str:
"""
Generate a chart from data and return it as a base64 encoded image.
Args:
data: The data to plot (can be a list of dicts or a pandas DataFrame)
chart_type: Type of chart to generate (bar, line, pie, scatter, histogram)
x: Column name for x-axis
y: Column name for y-axis (not needed for pie charts)
title: Chart title
x_label: Label for x-axis
y_label: Label for y-axis
Returns:
Markdown string with embedded image
"""
try:
# Convert data to DataFrame if it's a list of dicts
if isinstance(data, list):
df = pd.DataFrame(data)
elif isinstance(data, dict):
df = pd.DataFrame([data])
else:
df = data
if not isinstance(df, pd.DataFrame):
return "Error: Data must be a dictionary, list of dictionaries, or pandas DataFrame"
# Generate the appropriate chart type
fig = None
if chart_type == 'bar':
fig = px.bar(df, x=x, y=y, title=title)
elif chart_type == 'line':
fig = px.line(df, x=x, y=y, title=title)
elif chart_type == 'pie':
fig = px.pie(df, names=x, values=y, title=title)
elif chart_type == 'scatter':
fig = px.scatter(df, x=x, y=y, title=title)
elif chart_type == 'histogram':
fig = px.histogram(df, x=x, title=title)
else:
return "Error: Unsupported chart type. Use 'bar', 'line', 'pie', 'scatter', or 'histogram'"
# Update layout
fig.update_layout(
xaxis_title=x_label or x,
yaxis_title=y_label or (y if y != x else ''),
title=title or f"{chart_type.capitalize()} Chart of {x} vs {y}" if y else f"{chart_type.capitalize()} Chart of {x}",
template="plotly_white",
margin=dict(l=20, r=20, t=40, b=20),
height=400
)
# Save the figure to a temporary file
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.png')
fig.write_image(temp_file.name, format='png', engine='kaleido')
# Read the image file and encode as base64
with open(temp_file.name, 'rb') as img_file:
img_base64 = base64.b64encode(img_file.read()).decode('utf-8')
# Clean up the temporary file
os.unlink(temp_file.name)
# Return as markdown image
return f'<img src="data:image/png;base64,{img_base64}" style="max-width:100%;"/>'
except Exception as e:
error_msg = f"Error generating chart: {str(e)}"
logger.error(error_msg, exc_info=True)
return f"<div style='color: red;'>{error_msg}</div>"
logger = logging.getLogger(__name__)
def check_environment():
"""Verifica si el entorno está configurado correctamente."""
if not DEPENDENCIES_AVAILABLE:
return False, "Missing required Python packages. Please install them with: pip install -r requirements.txt"
# Verificar si estamos en un entorno con variables de entorno
required_vars = ["DB_USER", "DB_PASSWORD", "DB_HOST", "DB_NAME", "GOOGLE_API_KEY"]
missing_vars = [var for var in required_vars if not os.getenv(var)]
if missing_vars:
return False, f"Missing required environment variables: {', '.join(missing_vars)}"
return True, "Environment is properly configured"
def setup_database_connection():
"""Intenta establecer una conexión a la base de datos."""
if not DEPENDENCIES_AVAILABLE:
return None, "Dependencies not available"
try:
load_dotenv(override=True)
# Debug: Log all environment variables (without sensitive values)
logger.info("Environment variables:")
for key, value in os.environ.items():
if any(s in key.lower() for s in ['pass', 'key', 'secret']):
logger.info(f" {key}: {'*' * 8} (hidden for security)")
else:
logger.info(f" {key}: {value}")
db_user = os.getenv("DB_USER")
db_password = os.getenv("DB_PASSWORD")
db_host = os.getenv("DB_HOST")
db_name = os.getenv("DB_NAME")
# Debug: Log database connection info (without password)
logger.info(f"Database connection attempt - Host: {db_host}, User: {db_user}, DB: {db_name}")
if not all([db_user, db_password, db_host, db_name]):
missing = [var for var, val in [
("DB_USER", db_user),
("DB_PASSWORD", "*" if db_password else ""),
("DB_HOST", db_host),
("DB_NAME", db_name)
] if not val]
logger.error(f"Missing required database configuration: {', '.join(missing)}")
return None, f"Missing database configuration: {', '.join(missing)}"
if not all([db_user, db_password, db_host, db_name]):
return None, "Missing database configuration"
logger.info(f"Connecting to database: {db_user}@{db_host}/{db_name}")
# Probar conexión
connection = pymysql.connect(
host=db_host,
user=db_user,
password=db_password,
database=db_name,
connect_timeout=5,
cursorclass=pymysql.cursors.DictCursor
)
connection.close()
# Si la conexión es exitosa, crear motor SQLAlchemy
db_uri = f"mysql+pymysql://{db_user}:{db_password}@{db_host}/{db_name}"
logger.info("Database connection successful")
return SQLDatabase.from_uri(db_uri), ""
except Exception as e:
error_msg = f"Error connecting to database: {str(e)}"
logger.error(error_msg)
return None, error_msg
def initialize_llm():
"""Inicializa el modelo de lenguaje."""
if not DEPENDENCIES_AVAILABLE:
error_msg = "Dependencies not available. Make sure all required packages are installed."
logger.error(error_msg)
return None, error_msg
google_api_key = os.getenv("GOOGLE_API_KEY")
logger.info(f"GOOGLE_API_KEY found: {'Yes' if google_api_key else 'No'}")
if not google_api_key:
error_msg = "GOOGLE_API_KEY not found in environment variables. Please check your Hugging Face Space secrets."
logger.error(error_msg)
return None, error_msg
try:
logger.info("Initializing Google Generative AI...")
llm = ChatGoogleGenerativeAI(
model="gemini-2.0-flash",
temperature=0,
google_api_key=google_api_key,
convert_system_message_to_human=True # Convert system messages to human messages
)
# Test the model with a simple prompt
test_prompt = "Hello, this is a test."
logger.info(f"Testing model with prompt: {test_prompt}")
test_response = llm.invoke(test_prompt)
logger.info(f"Model test response: {str(test_response)[:100]}...") # Log first 100 chars
logger.info("Google Generative AI initialized successfully")
return llm, ""
except Exception as e:
error_msg = f"Error initializing Google Generative AI: {str(e)}"
logger.error(error_msg, exc_info=True) # Include full stack trace
return None, error_msg
def create_agent():
"""Crea el agente SQL si es posible."""
if not DEPENDENCIES_AVAILABLE:
error_msg = "Dependencies not available. Please check if all required packages are installed."
logger.error(error_msg)
return None, error_msg
logger.info("Starting agent creation process...")
def create_agent(llm, db_connection):
"""Create and return a SQL database agent with conversation memory."""
if not llm:
error_msg = "Cannot create agent: LLM is not available"
logger.error(error_msg)
return None, error_msg
if not db_connection:
error_msg = "Cannot create agent: Database connection is not available"
logger.error(error_msg)
return None, error_msg
try:
logger.info("Creating SQL agent with memory...")
# Create conversation memory
memory = ConversationBufferWindowMemory(
memory_key="chat_history",
k=5, # Keep last 5 message exchanges in memory
return_messages=True,
output_key="output"
)
# Create the database toolkit with additional configuration
toolkit = SQLDatabaseToolkit(
db=db_connection,
llm=llm
)
# Create the agent with memory and more detailed configuration
agent = create_sql_agent(
llm=llm,
toolkit=toolkit,
agent_type=AgentType.OPENAI_FUNCTIONS,
verbose=True,
handle_parsing_errors=True, # Better error handling for parsing
max_iterations=10, # Limit the number of iterations
early_stopping_method="generate", # Stop early if the agent is stuck
memory=memory, # Add memory to the agent
return_intermediate_steps=True # Important for memory to work properly
)
# Test the agent with a simple query
logger.info("Testing agent with a simple query...")
try:
test_query = "SELECT 1"
test_result = agent.run(test_query)
logger.info(f"Agent test query successful: {str(test_result)[:200]}...")
except Exception as e:
logger.warning(f"Agent test query failed (this might be expected): {str(e)}")
# Continue even if test fails, as it might be due to model limitations
logger.info("SQL agent created successfully")
return agent, ""
except Exception as e:
error_msg = f"Error creating SQL agent: {str(e)}"
logger.error(error_msg, exc_info=True)
return None, error_msg
# Inicializar el agente
logger.info("="*50)
logger.info("Starting application initialization...")
logger.info(f"Python version: {sys.version}")
logger.info(f"Current working directory: {os.getcwd()}")
logger.info(f"Files in working directory: {os.listdir()}")
# Verificar las variables de entorno
logger.info("Checking environment variables...")
for var in ["DB_USER", "DB_PASSWORD", "DB_HOST", "DB_NAME", "GOOGLE_API_KEY"]:
logger.info(f"{var}: {'*' * 8 if os.getenv(var) else 'NOT SET'}")
# Initialize components
logger.info("Initializing database connection...")
db_connection, db_error = setup_database_connection()
if db_error:
logger.error(f"Failed to initialize database: {db_error}")
logger.info("Initializing language model...")
llm, llm_error = initialize_llm()
if llm_error:
logger.error(f"Failed to initialize language model: {llm_error}")
logger.info("Initializing agent...")
agent, agent_error = create_agent(llm, db_connection)
db_connected = agent is not None
if agent:
logger.info("Agent initialized successfully")
else:
logger.error(f"Failed to initialize agent: {agent_error}")
logger.info("="*50)
def extract_sql_query(text):
"""Extrae consultas SQL del texto usando expresiones regulares."""
if not text:
return None
# Buscar código SQL entre backticks
sql_match = re.search(r'```(?:sql)?\s*(.*?)```', text, re.DOTALL)
if sql_match:
return sql_match.group(1).strip()
# Si no hay backticks, buscar una consulta SQL simple
sql_match = re.search(r'(SELECT|INSERT|UPDATE|DELETE|CREATE|ALTER|DROP|TRUNCATE).*?;', text, re.IGNORECASE | re.DOTALL)
if sql_match:
return sql_match.group(0).strip()
return None
def execute_sql_query(query, db_connection):
"""Ejecuta una consulta SQL y devuelve los resultados como una cadena."""
if not db_connection:
return "Error: No hay conexión a la base de datos"
try:
with db_connection._engine.connect() as connection:
result = connection.execute(query)
rows = result.fetchall()
# Convertir los resultados a un formato legible
if not rows:
return "La consulta no devolvió resultados"
# Si es un solo resultado, devolverlo directamente
if len(rows) == 1 and len(rows[0]) == 1:
return str(rows[0][0])
# Si hay múltiples filas, formatear como tabla
try:
import pandas as pd
df = pd.DataFrame(rows)
return df.to_markdown(index=False)
except ImportError:
# Si pandas no está disponible, usar formato simple
return "\n".join([str(row) for row in rows])
except Exception as e:
return f"Error ejecutando la consulta: {str(e)}"
def generate_plot(data, x_col, y_col, title, x_label, y_label):
"""Generate a plot from data and return the file path."""
plt.figure(figsize=(10, 6))
plt.bar(data[x_col], data[y_col])
plt.title(title)
plt.xlabel(x_label)
plt.ylabel(y_label)
plt.xticks(rotation=45)
plt.tight_layout()
# Save to a temporary file
temp_dir = tempfile.mkdtemp()
plot_path = os.path.join(temp_dir, "plot.png")
plt.savefig(plot_path)
plt.close()
return plot_path
def convert_to_messages_format(chat_history):
"""Convert chat history to the format expected by Gradio 5.x"""
if not chat_history:
return []
messages = []
# If the first element is a list, assume it's in the old format
if isinstance(chat_history[0], list):
for msg in chat_history:
if isinstance(msg, list) and len(msg) == 2:
# Format: [user_msg, bot_msg]
user_msg, bot_msg = msg
if user_msg:
messages.append({"role": "user", "content": user_msg})
if bot_msg:
messages.append({"role": "assistant", "content": bot_msg})
else:
# Assume it's already in the correct format or can be used as is
for msg in chat_history:
if isinstance(msg, dict) and "role" in msg and "content" in msg:
messages.append(msg)
elif isinstance(msg, str):
# If it's a string, assume it's a user message
messages.append({"role": "user", "content": msg})
return messages
async def stream_agent_response(question: str, chat_history: List[Tuple[str, str]]) -> str:
"""Procesa la pregunta del usuario y devuelve la respuesta del agente con memoria de conversación."""
global agent # Make sure we can modify the agent's memory
# Initialize response
response_text = ""
messages = []
# Add previous chat history in the correct format for the agent
for user_msg, assistant_msg in chat_history:
if user_msg:
messages.append(HumanMessage(content=user_msg))
if assistant_msg:
messages.append(AIMessage(content=assistant_msg))
# Add current user's question
user_message = HumanMessage(content=question)
messages.append(user_message)
if not agent:
error_msg = (
"## ⚠️ Error: Agente no inicializado\n\n"
"No se pudo inicializar el agente de base de datos. Por favor, verifica que:\n"
"1. Todas las variables de entorno estén configuradas correctamente\n"
"2. La base de datos esté accesible\n"
f"3. El modelo de lenguaje esté disponible\n\n"
f"Error: {agent_error}"
)
assistant_message = {"role": "assistant", "content": error_msg}
return [assistant_message]
# Update the agent's memory with the full conversation history
try:
# Clear existing memory
if hasattr(agent, 'memory') and agent.memory is not None:
agent.memory.clear()
# Add all messages to memory
for i in range(0, len(messages)-1, 2): # Process in pairs (user, assistant)
if i+1 < len(messages):
agent.memory.save_context(
{"input": messages[i].content},
{"output": messages[i+1].content}
)
except Exception as e:
logger.error(f"Error updating agent memory: {str(e)}", exc_info=True)
try:
# Add empty assistant message that will be updated
assistant_message = {"role": "assistant", "content": ""}
messages.append(assistant_message)
# Execute the agent with proper error handling
try:
response = await agent.ainvoke({"input": question, "chat_history": chat_history})
logger.info(f"Agent response type: {type(response)}")
logger.info(f"Agent response content: {str(response)[:500]}...")
# Handle different response formats
if hasattr(response, 'output') and response.output:
response_text = response.output
elif isinstance(response, str):
response_text = response
elif hasattr(response, 'get') and callable(response.get) and 'output' in response:
response_text = response['output']
else:
response_text = str(response)
logger.info(f"Extracted response text: {response_text[:200]}...")
# Check if the response contains an SQL query
sql_query = extract_sql_query(response_text)
if sql_query:
logger.info(f"Detected SQL query: {sql_query}")
# Execute the query and update the response
db_connection, _ = setup_database_connection()
if db_connection:
query_result = execute_sql_query(sql_query, db_connection)
# Add the query and its result to the response
response_text += f"\n\n### 🔍 Resultado de la consulta:\n```sql\n{sql_query}\n```\n\n{query_result}"
# Try to generate a chart if the result is tabular
try:
if isinstance(query_result, str) and '|' in query_result and '---' in query_result:
# Convert markdown table to DataFrame
from io import StringIO
import re
# Clean up the markdown table
lines = [line.strip() for line in query_result.split('\n')
if line.strip() and '---' not in line and '|' in line]
if len(lines) > 1: # At least header + 1 data row
# Get column names from the first line
columns = [col.strip() for col in lines[0].split('|')[1:-1]]
# Get data rows
data = []
for line in lines[1:]:
values = [val.strip() for val in line.split('|')[1:-1]]
if len(values) == len(columns):
data.append(dict(zip(columns, values)))
if data and len(columns) >= 2:
# Generate a chart based on the data
chart_type = 'bar' # Default chart type
if len(columns) == 2:
# Simple bar chart for two columns
chart_html = generate_chart(
data=data,
chart_type=chart_type,
x=columns[0],
y=columns[1],
title=f"{columns[1]} por {columns[0]}",
x_label=columns[0],
y_label=columns[1]
)
response_text += f"\n\n### 📊 Visualización:\n{chart_html}"
elif len(columns) > 2:
# For multiple columns, create a line chart
chart_html = generate_chart(
data=data,
chart_type='line',
x=columns[0],
y=columns[1],
title=f"{', '.join(columns[1:])} por {columns[0]}",
x_label=columns[0],
y_label=", ".join(columns[1:])
)
response_text += f"\n\n### 📊 Visualización:\n{chart_html}"
except Exception as e:
logger.error(f"Error generating chart: {str(e)}", exc_info=True)
# Don't fail the whole request if chart generation fails
response_text += "\n\n⚠️ No se pudo generar la visualización de los datos."
else:
response_text += "\n\n⚠️ No se pudo conectar a la base de datos para ejecutar la consulta."
# Update the assistant's message with the response
assistant_message["content"] = response_text
except Exception as e:
error_msg = f"Error al ejecutar el agente: {str(e)}"
logger.error(error_msg, exc_info=True)
assistant_message["content"] = f"## ❌ Error\n\n{error_msg}"
# Return the message in the correct format for Gradio Chatbot
# Format: list of tuples where each tuple is (user_msg, bot_msg)
# For a single response, we return [(None, message)]
message_content = ""
if isinstance(assistant_message, dict) and "content" in assistant_message:
message_content = assistant_message["content"]
elif isinstance(assistant_message, str):
message_content = assistant_message
else:
message_content = str(assistant_message)
# Return the assistant's response in the format expected by the bot_response function
# The bot_response function will handle updating the chat history
return message_content
except Exception as e:
error_msg = f"## ❌ Error\n\nOcurrió un error al procesar tu solicitud:\n\n```\n{str(e)}\n```"
logger.error(f"Error in stream_agent_response: {str(e)}", exc_info=True)
# Ensure we return in the correct format: [(user_msg, bot_msg)]
return [(None, error_msg)]
# Custom CSS for the app
custom_css = """
.gradio-container {
max-width: 1200px !important;
margin: 0 auto !important;
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen, Ubuntu, Cantarell, sans-serif;
}
#chatbot {
min-height: 500px;
border: 1px solid #e0e0e0;
border-radius: 8px;
margin-bottom: 20px;
padding: 20px;
background-color: #f9f9f9;
}
.user-message, .bot-message {
padding: 12px 16px;
border-radius: 18px;
margin: 8px 0;
max-width: 80%;
line-height: 1.5;
}
.user-message {
background-color: #007bff;
color: white;
margin-left: auto;
border-bottom-right-radius: 4px;
}
.bot-message {
background-color: #f1f1f1;
color: #333;
margin-right: auto;
border-bottom-left-radius: 4px;
}
#question-input textarea {
min-height: 50px !important;
border-radius: 8px !important;
padding: 12px !important;
font-size: 16px !important;
}
#send-button {
height: 100%;
background-color: #007bff !important;
color: white !important;
border: none !important;
border-radius: 8px !important;
font-weight: 500 !important;
transition: background-color 0.2s !important;
}
#send-button:hover {
background-color: #0056b3 !important;
}
.status-message {
text-align: center;
color: #666;
font-style: italic;
margin: 10px 0;
}
"""
def create_ui():
"""Crea y devuelve los componentes de la interfaz de usuario de Gradio."""
# Verificar el estado del entorno
env_ok, env_message = check_environment()
# Crear el tema personalizado
theme = gr.themes.Soft(
primary_hue="blue",
secondary_hue="indigo",
neutral_hue="slate"
)
with gr.Blocks(
css=custom_css,
title="Asistente de Base de Datos SQL",
theme=theme
) as demo:
# Encabezado
gr.Markdown("""
# 🤖 Asistente de Base de Datos SQL
Haz preguntas en lenguaje natural sobre tu base de datos y obtén resultados de consultas SQL.
""")
# Mensaje de estado
if not env_ok:
gr.Warning("⚠️ " + env_message)
# Create the chat interface
with gr.Row():
chatbot = gr.Chatbot(
[],
elem_id="chatbot",
bubble_full_width=False,
avatar_images=(
None,
(os.path.join(os.path.dirname(__file__), "logo.svg")),
),
height=600,
render_markdown=True, # Enable markdown rendering
show_label=False,
show_share_button=False,
container=True,
layout="panel" # Better layout for messages
)
# Input area
with gr.Row():
question_input = gr.Textbox(
label="",
placeholder="Escribe tu pregunta aquí...",
container=False,
scale=5,
min_width=300,
max_lines=3,
autofocus=True,
elem_id="question-input"
)
submit_button = gr.Button(
"Enviar",
variant="primary",
min_width=100,
scale=1,
elem_id="send-button"
)
# System status
with gr.Accordion("ℹ️ Estado del sistema", open=not env_ok):
if not DEPENDENCIES_AVAILABLE:
gr.Markdown("""
## ❌ Dependencias faltantes
Para ejecutar esta aplicación localmente, necesitas instalar las dependencias:
```bash
pip install -r requirements.txt
```
""")
else:
if not agent:
gr.Markdown(f"""
## ⚠️ Configuración incompleta
No se pudo inicializar el agente de base de datos. Por favor, verifica que:
1. Todas las variables de entorno estén configuradas correctamente
2. La base de datos esté accesible
3. La API de Google Gemini esté configurada
**Error:** {agent_error if agent_error else 'No se pudo determinar el error'}
### Configuración local
Crea un archivo `.env` en la raíz del proyecto con las siguientes variables:
```
DB_USER=tu_usuario
DB_PASSWORD=tu_contraseña
DB_HOST=tu_servidor
DB_NAME=tu_base_de_datos
GOOGLE_API_KEY=tu_api_key_de_google
```
""")
else:
if os.getenv('SPACE_ID'):
# Modo demo en Hugging Face Spaces
gr.Markdown("""
## 🚀 Modo Demo
Esta es una demostración del asistente de base de datos SQL. Para usar la versión completa con conexión a base de datos:
1. Clona este espacio en tu cuenta de Hugging Face
2. Configura las variables de entorno en la configuración del espacio:
- `DB_USER`: Tu usuario de base de datos
- `DB_PASSWORD`: Tu contraseña de base de datos
- `DB_HOST`: La dirección del servidor de base de datos
- `DB_NAME`: El nombre de la base de datos
- `GOOGLE_API_KEY`: Tu clave de API de Google Gemini
**Nota:** Actualmente estás en modo de solo demostración.
""")
else:
gr.Markdown("""
## ✅ Sistema listo
El asistente está listo para responder tus preguntas sobre la base de datos.
""")
# Hidden component for streaming output
streaming_output_display = gr.Textbox(visible=False)
return demo, chatbot, question_input, submit_button, streaming_output_display
def create_application():
"""Create and configure the Gradio application."""
# Create the UI components
demo, chatbot, question_input, submit_button, streaming_output_display = create_ui()
def user_message(user_input: str, chat_history: List[Tuple[str, str]]) -> Tuple[str, List[Tuple[str, str]]]:
"""Add user message to chat history and clear input."""
if not user_input.strip():
return "", chat_history
logger.info(f"User message: {user_input}")
# Initialize chat history if needed
if chat_history is None:
chat_history = []
# Add user message and empty assistant response
chat_history.append((user_input, None))
# Clear the input
return "", chat_history
async def bot_response(chat_history: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
"""Get bot response and update chat history."""
if not chat_history:
return chat_history
# Get the last user message (first element of the last tuple if it exists)
if not chat_history[-1][0] or chat_history[-1][1] is not None:
return chat_history
try:
question = chat_history[-1][0]
logger.info(f"Processing question: {question}")
# Call the agent and get the response
assistant_message = await stream_agent_response(question, chat_history[:-1])
# Update the assistant's message in the chat history
chat_history[-1] = (question, assistant_message)
logger.info("Response generation complete")
return chat_history
except Exception as e:
error_msg = f"## ❌ Error\n\nError al procesar la solicitud:\n\n```\n{str(e)}\n```"
logger.error(error_msg, exc_info=True)
if chat_history and len(chat_history[-1]) == 2 and chat_history[-1][1] is None:
chat_history[-1] = (chat_history[-1][0], error_msg)
return chat_history
# Event handlers
with demo:
# Handle form submission
msg_submit = question_input.submit(
fn=user_message,
inputs=[question_input, chatbot],
outputs=[question_input, chatbot],
queue=True
).then(
fn=bot_response,
inputs=[chatbot],
outputs=[chatbot],
api_name="ask"
)
# Handle button click
btn_click = submit_button.click(
fn=user_message,
inputs=[question_input, chatbot],
outputs=[question_input, chatbot],
queue=True
).then(
fn=bot_response,
inputs=[chatbot],
outputs=[chatbot]
)
return demo
# Create the application
demo = create_application()
# Configuración para Hugging Face Spaces
def get_app():
"""Obtiene la instancia de la aplicación Gradio para Hugging Face Spaces."""
# Verificar si estamos en un entorno de Hugging Face Spaces
if os.getenv('SPACE_ID'):
# Configuración específica para Spaces
demo.title = "🤖 Asistente de Base de Datos SQL (Demo)"
demo.description = """
Este es un demo del asistente de base de datos SQL.
Para usar la versión completa con conexión a base de datos, clona este espacio y configura las variables de entorno.
"""
return demo
# Para desarrollo local
if __name__ == "__main__":
# Configuración para desarrollo local - versión simplificada para Gradio 5.x
demo.launch(
server_name="0.0.0.0",
server_port=7860,
debug=True,
share=False
)