Jeremy Live
commited on
Commit
·
241f37e
1
Parent(s):
c22eca1
Revert "API solved"
Browse filesThis reverts commit 0f16c64a587e372a3a073c11e3f7e374cae9dbfd.
README.md
CHANGED
@@ -19,104 +19,11 @@ A powerful chatbot that can answer questions by querying your SQL database using
|
|
19 |
- Interactive chat interface
|
20 |
- Direct database connectivity
|
21 |
- Powered by Google's Gemini AI
|
22 |
-
- RESTful API endpoints for integration
|
23 |
|
24 |
## Setup
|
25 |
|
26 |
-
1. Set up your environment variables in `.env` file
|
27 |
-
|
28 |
-
|
29 |
-
DB_PASSWORD=tu_contraseña
|
30 |
-
DB_HOST=tu_servidor
|
31 |
-
DB_NAME=tu_base_de_datos
|
32 |
-
GOOGLE_API_KEY=tu_api_key_de_google
|
33 |
-
```
|
34 |
-
|
35 |
-
2. Install dependencies:
|
36 |
-
```bash
|
37 |
-
pip install -r requirements.txt
|
38 |
-
```
|
39 |
-
|
40 |
-
3. Run the web interface:
|
41 |
-
```bash
|
42 |
-
python app.py
|
43 |
-
```
|
44 |
-
|
45 |
-
4. Run the API server:
|
46 |
-
```bash
|
47 |
-
python api.py
|
48 |
-
```
|
49 |
-
|
50 |
-
## API Usage
|
51 |
-
|
52 |
-
La API proporciona dos endpoints principales:
|
53 |
-
|
54 |
-
### 1. Enviar Mensaje de Usuario
|
55 |
-
|
56 |
-
**Endpoint:** `/user_message`
|
57 |
-
|
58 |
-
**Método:** POST
|
59 |
-
|
60 |
-
**Headers:**
|
61 |
-
```
|
62 |
-
Content-Type: application/json
|
63 |
-
```
|
64 |
-
|
65 |
-
**Body:**
|
66 |
-
```json
|
67 |
-
{
|
68 |
-
"message": "tu pregunta aquí"
|
69 |
-
}
|
70 |
-
```
|
71 |
-
|
72 |
-
**Respuesta exitosa:**
|
73 |
-
```json
|
74 |
-
{
|
75 |
-
"message_id": "uuid-generado",
|
76 |
-
"status": "success"
|
77 |
-
}
|
78 |
-
```
|
79 |
-
|
80 |
-
### 2. Obtener Respuesta
|
81 |
-
|
82 |
-
**Endpoint:** `/ask`
|
83 |
-
|
84 |
-
**Método:** POST
|
85 |
-
|
86 |
-
**Headers:**
|
87 |
-
```
|
88 |
-
Content-Type: application/json
|
89 |
-
```
|
90 |
-
|
91 |
-
**Body:**
|
92 |
-
```json
|
93 |
-
{
|
94 |
-
"message_id": "uuid-del-mensaje"
|
95 |
-
}
|
96 |
-
```
|
97 |
-
|
98 |
-
**Respuesta exitosa:**
|
99 |
-
```json
|
100 |
-
{
|
101 |
-
"response": "respuesta del chatbot",
|
102 |
-
"status": "success"
|
103 |
-
}
|
104 |
-
```
|
105 |
-
|
106 |
-
## Ejemplo de uso de la API
|
107 |
-
|
108 |
-
1. Primero, envía tu pregunta:
|
109 |
-
```bash
|
110 |
-
curl -X POST http://localhost:5000/user_message \
|
111 |
-
-H "Content-Type: application/json" \
|
112 |
-
-d '{"message": "¿Cuántos usuarios hay en la base de datos?"}'
|
113 |
-
```
|
114 |
-
|
115 |
-
2. Luego, usa el message_id recibido para obtener la respuesta:
|
116 |
-
```bash
|
117 |
-
curl -X POST http://localhost:5000/ask \
|
118 |
-
-H "Content-Type: application/json" \
|
119 |
-
-d '{"message_id": "uuid-recibido"}'
|
120 |
-
```
|
121 |
|
122 |
Check out the [configuration reference](https://huggingface.co/docs/hub/spaces-config-reference) for more options.
|
|
|
19 |
- Interactive chat interface
|
20 |
- Direct database connectivity
|
21 |
- Powered by Google's Gemini AI
|
|
|
22 |
|
23 |
## Setup
|
24 |
|
25 |
+
1. Set up your environment variables in `.env` file
|
26 |
+
2. Install dependencies: `pip install -r requirements.txt`
|
27 |
+
3. Run the app: `python app.py`
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
Check out the [configuration reference](https://huggingface.co/docs/hub/spaces-config-reference) for more options.
|
api.py
DELETED
@@ -1,103 +0,0 @@
|
|
1 |
-
from flask import Flask, request, jsonify
|
2 |
-
from typing import Dict, Optional
|
3 |
-
import uuid
|
4 |
-
import os
|
5 |
-
from app import initialize_llm, setup_database_connection, create_agent, gr
|
6 |
-
|
7 |
-
app = Flask(__name__)
|
8 |
-
|
9 |
-
# Almacenamiento en memoria de los mensajes
|
10 |
-
message_store: Dict[str, str] = {}
|
11 |
-
|
12 |
-
@app.route('/user_message', methods=['POST'])
|
13 |
-
def handle_user_message():
|
14 |
-
try:
|
15 |
-
data = request.get_json()
|
16 |
-
if not data or 'message' not in data:
|
17 |
-
return jsonify({'error': 'Se requiere el campo message'}), 400
|
18 |
-
|
19 |
-
user_message = data['message']
|
20 |
-
|
21 |
-
# Generar un ID único para este mensaje
|
22 |
-
message_id = str(uuid.uuid4())
|
23 |
-
|
24 |
-
# Almacenar el mensaje
|
25 |
-
message_store[message_id] = user_message
|
26 |
-
|
27 |
-
return jsonify({
|
28 |
-
'message_id': message_id,
|
29 |
-
'status': 'success'
|
30 |
-
})
|
31 |
-
|
32 |
-
except Exception as e:
|
33 |
-
return jsonify({'error': str(e)}), 500
|
34 |
-
|
35 |
-
@app.route('/ask', methods=['POST'])
|
36 |
-
def handle_ask():
|
37 |
-
try:
|
38 |
-
data = request.get_json()
|
39 |
-
if not data or 'message_id' not in data:
|
40 |
-
return jsonify({'error': 'Se requiere el campo message_id'}), 400
|
41 |
-
|
42 |
-
message_id = data['message_id']
|
43 |
-
|
44 |
-
# Recuperar el mensaje almacenado
|
45 |
-
if message_id not in message_store:
|
46 |
-
return jsonify({'error': 'ID de mensaje no encontrado'}), 404
|
47 |
-
|
48 |
-
user_message = message_store[message_id]
|
49 |
-
|
50 |
-
# Inicializar componentes necesarios
|
51 |
-
llm, llm_error = initialize_llm()
|
52 |
-
if llm_error:
|
53 |
-
return jsonify({'error': f'Error al inicializar LLM: {llm_error}'}), 500
|
54 |
-
|
55 |
-
db_connection, db_error = setup_database_connection()
|
56 |
-
if db_error:
|
57 |
-
return jsonify({'error': f'Error de conexión a la base de datos: {db_error}'}), 500
|
58 |
-
|
59 |
-
agent, agent_error = create_agent(llm, db_connection)
|
60 |
-
if agent_error:
|
61 |
-
return jsonify({'error': f'Error al crear el agente: {agent_error}'}), 500
|
62 |
-
|
63 |
-
# Obtener respuesta del agente
|
64 |
-
response = agent.invoke({"input": user_message})
|
65 |
-
|
66 |
-
# Procesar la respuesta
|
67 |
-
if hasattr(response, 'output') and response.output:
|
68 |
-
response_text = response.output
|
69 |
-
elif isinstance(response, str):
|
70 |
-
response_text = response
|
71 |
-
elif hasattr(response, 'get') and callable(response.get) and 'output' in response:
|
72 |
-
response_text = response['output']
|
73 |
-
else:
|
74 |
-
response_text = str(response)
|
75 |
-
|
76 |
-
# Eliminar el mensaje almacenado después de procesarlo
|
77 |
-
del message_store[message_id]
|
78 |
-
|
79 |
-
return jsonify({
|
80 |
-
'response': response_text,
|
81 |
-
'status': 'success'
|
82 |
-
})
|
83 |
-
|
84 |
-
except Exception as e:
|
85 |
-
return jsonify({'error': str(e)}), 500
|
86 |
-
|
87 |
-
# Integración con Gradio para Hugging Face Spaces
|
88 |
-
def mount_in_app(gradio_app):
|
89 |
-
"""Monta la API Flask en la aplicación Gradio."""
|
90 |
-
return gradio_app
|
91 |
-
|
92 |
-
if __name__ == '__main__':
|
93 |
-
# Si se ejecuta directamente, inicia el servidor Flask
|
94 |
-
port = int(os.environ.get('PORT', 5000))
|
95 |
-
app.run(host='0.0.0.0', port=port)
|
96 |
-
else:
|
97 |
-
# Si se importa como módulo (en Hugging Face Spaces),
|
98 |
-
# expone la función para montar en Gradio
|
99 |
-
gradio_app = gr.mount_gradio_app(
|
100 |
-
app,
|
101 |
-
"/api", # Prefijo para los endpoints de la API
|
102 |
-
lambda: True # Autenticación deshabilitada
|
103 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
@@ -12,23 +12,976 @@ import pandas as pd
|
|
12 |
import plotly.express as px
|
13 |
import plotly.graph_objects as go
|
14 |
from plotly.subplots import make_subplots
|
15 |
-
|
|
|
|
|
|
|
16 |
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
def create_application():
|
20 |
"""Create and configure the Gradio application."""
|
21 |
# Create the UI components
|
22 |
demo, chatbot, chart_display, question_input, submit_button, streaming_output_display = create_ui()
|
23 |
|
24 |
-
# Montar la API Flask en la aplicación Gradio
|
25 |
-
if os.getenv('SPACE_ID'):
|
26 |
-
demo = gr.mount_gradio_app(
|
27 |
-
flask_app,
|
28 |
-
"/api", # Prefijo para los endpoints de la API
|
29 |
-
lambda: True # Autenticación deshabilitada
|
30 |
-
)
|
31 |
-
|
32 |
def user_message(user_input: str, chat_history: List[Dict[str, str]]) -> Tuple[str, List[Dict[str, str]]]:
|
33 |
"""Add user message to chat history (messages format) and clear input."""
|
34 |
if not user_input.strip():
|
@@ -81,6 +1034,37 @@ def create_application():
|
|
81 |
# Append assistant message back into messages history
|
82 |
chat_history.append({"role": "assistant", "content": assistant_message})
|
83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
logger.info("Response generation complete")
|
85 |
return chat_history, chart_fig
|
86 |
|
|
|
12 |
import plotly.express as px
|
13 |
import plotly.graph_objects as go
|
14 |
from plotly.subplots import make_subplots
|
15 |
+
try:
|
16 |
+
from sqlalchemy import text as sa_text
|
17 |
+
except Exception:
|
18 |
+
sa_text = None
|
19 |
|
20 |
+
try:
|
21 |
+
# Intentar importar dependencias opcionales
|
22 |
+
from langchain_community.agent_toolkits import create_sql_agent
|
23 |
+
from langchain_community.agent_toolkits.sql.toolkit import SQLDatabaseToolkit
|
24 |
+
from langchain_community.utilities import SQLDatabase
|
25 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
26 |
+
from langchain.agents.agent_types import AgentType
|
27 |
+
from langchain.memory import ConversationBufferWindowMemory
|
28 |
+
from langchain_core.messages import AIMessage, HumanMessage, SystemMessage
|
29 |
+
import pymysql
|
30 |
+
from dotenv import load_dotenv
|
31 |
+
|
32 |
+
DEPENDENCIES_AVAILABLE = True
|
33 |
+
except ImportError as e:
|
34 |
+
logger.warning(f"Some dependencies are not available: {e}")
|
35 |
+
DEPENDENCIES_AVAILABLE = False
|
36 |
+
|
37 |
+
# Configuración de logging
|
38 |
+
logging.basicConfig(level=logging.INFO)
|
39 |
+
logger = logging.getLogger(__name__)
|
40 |
+
|
41 |
+
# Configure logging
|
42 |
+
logging.basicConfig(level=logging.INFO)
|
43 |
+
|
44 |
+
def generate_chart(data: Union[Dict, List[Dict], pd.DataFrame],
|
45 |
+
chart_type: str,
|
46 |
+
x: str,
|
47 |
+
y: str = None,
|
48 |
+
title: str = "",
|
49 |
+
x_label: str = None,
|
50 |
+
y_label: str = None):
|
51 |
+
"""
|
52 |
+
Generate an interactive Plotly figure from data.
|
53 |
+
|
54 |
+
Args:
|
55 |
+
data: The data to plot (can be a list of dicts or a pandas DataFrame)
|
56 |
+
chart_type: Type of chart to generate (bar, line, pie, scatter, histogram)
|
57 |
+
x: Column name for x-axis (names for pie)
|
58 |
+
y: Column name for y-axis (values for pie)
|
59 |
+
title: Chart title
|
60 |
+
x_label: Label for x-axis
|
61 |
+
y_label: Label for y-axis
|
62 |
+
|
63 |
+
Returns:
|
64 |
+
A Plotly Figure object (interactive) or None on error
|
65 |
+
"""
|
66 |
+
try:
|
67 |
+
# Convert data to DataFrame if it's a list of dicts
|
68 |
+
if isinstance(data, list):
|
69 |
+
df = pd.DataFrame(data)
|
70 |
+
elif isinstance(data, dict):
|
71 |
+
df = pd.DataFrame([data])
|
72 |
+
else:
|
73 |
+
df = data
|
74 |
+
|
75 |
+
if not isinstance(df, pd.DataFrame):
|
76 |
+
return None
|
77 |
+
|
78 |
+
# Generate the appropriate chart type
|
79 |
+
fig = None
|
80 |
+
if chart_type == 'bar':
|
81 |
+
fig = px.bar(df, x=x, y=y, title=title)
|
82 |
+
elif chart_type == 'line':
|
83 |
+
fig = px.line(df, x=x, y=y, title=title)
|
84 |
+
elif chart_type == 'pie':
|
85 |
+
fig = px.pie(df, names=x, values=y, title=title, hole=0)
|
86 |
+
elif chart_type == 'scatter':
|
87 |
+
fig = px.scatter(df, x=x, y=y, title=title)
|
88 |
+
elif chart_type == 'histogram':
|
89 |
+
fig = px.histogram(df, x=x, title=title)
|
90 |
+
else:
|
91 |
+
return None
|
92 |
+
|
93 |
+
# Update layout
|
94 |
+
fig.update_layout(
|
95 |
+
xaxis_title=x_label or x,
|
96 |
+
yaxis_title=y_label or (y if y != x else ''),
|
97 |
+
title=title or f"{chart_type.capitalize()} Chart of {x} vs {y}" if y else f"{chart_type.capitalize()} Chart of {x}",
|
98 |
+
template="plotly_white",
|
99 |
+
margin=dict(l=20, r=20, t=40, b=20),
|
100 |
+
height=400
|
101 |
+
)
|
102 |
+
|
103 |
+
return fig
|
104 |
+
|
105 |
+
except Exception as e:
|
106 |
+
error_msg = f"Error generating chart: {str(e)}"
|
107 |
+
logger.error(error_msg, exc_info=True)
|
108 |
+
return None
|
109 |
+
|
110 |
+
logger = logging.getLogger(__name__)
|
111 |
+
|
112 |
+
def check_environment():
|
113 |
+
"""Verifica si el entorno está configurado correctamente."""
|
114 |
+
if not DEPENDENCIES_AVAILABLE:
|
115 |
+
return False, "Missing required Python packages. Please install them with: pip install -r requirements.txt"
|
116 |
+
|
117 |
+
# Verificar si estamos en un entorno con variables de entorno
|
118 |
+
required_vars = ["DB_USER", "DB_PASSWORD", "DB_HOST", "DB_NAME", "GOOGLE_API_KEY"]
|
119 |
+
missing_vars = [var for var in required_vars if not os.getenv(var)]
|
120 |
+
|
121 |
+
if missing_vars:
|
122 |
+
return False, f"Missing required environment variables: {', '.join(missing_vars)}"
|
123 |
+
|
124 |
+
return True, "Environment is properly configured"
|
125 |
+
|
126 |
+
def setup_database_connection():
|
127 |
+
"""Intenta establecer una conexión a la base de datos."""
|
128 |
+
if not DEPENDENCIES_AVAILABLE:
|
129 |
+
return None, "Dependencies not available"
|
130 |
+
|
131 |
+
try:
|
132 |
+
load_dotenv(override=True)
|
133 |
+
|
134 |
+
# Debug: Log all environment variables (without sensitive values)
|
135 |
+
logger.info("Environment variables:")
|
136 |
+
for key, value in os.environ.items():
|
137 |
+
if any(s in key.lower() for s in ['pass', 'key', 'secret']):
|
138 |
+
logger.info(f" {key}: {'*' * 8} (hidden for security)")
|
139 |
+
else:
|
140 |
+
logger.info(f" {key}: {value}")
|
141 |
+
|
142 |
+
db_user = os.getenv("DB_USER")
|
143 |
+
db_password = os.getenv("DB_PASSWORD")
|
144 |
+
db_host = os.getenv("DB_HOST")
|
145 |
+
db_name = os.getenv("DB_NAME")
|
146 |
+
|
147 |
+
# Debug: Log database connection info (without password)
|
148 |
+
logger.info(f"Database connection attempt - Host: {db_host}, User: {db_user}, DB: {db_name}")
|
149 |
+
if not all([db_user, db_password, db_host, db_name]):
|
150 |
+
missing = [var for var, val in [
|
151 |
+
("DB_USER", db_user),
|
152 |
+
("DB_PASSWORD", "*" if db_password else ""),
|
153 |
+
("DB_HOST", db_host),
|
154 |
+
("DB_NAME", db_name)
|
155 |
+
] if not val]
|
156 |
+
logger.error(f"Missing required database configuration: {', '.join(missing)}")
|
157 |
+
return None, f"Missing database configuration: {', '.join(missing)}"
|
158 |
+
|
159 |
+
if not all([db_user, db_password, db_host, db_name]):
|
160 |
+
return None, "Missing database configuration"
|
161 |
+
|
162 |
+
logger.info(f"Connecting to database: {db_user}@{db_host}/{db_name}")
|
163 |
+
|
164 |
+
# Probar conexión
|
165 |
+
connection = pymysql.connect(
|
166 |
+
host=db_host,
|
167 |
+
user=db_user,
|
168 |
+
password=db_password,
|
169 |
+
database=db_name,
|
170 |
+
connect_timeout=5,
|
171 |
+
cursorclass=pymysql.cursors.DictCursor
|
172 |
+
)
|
173 |
+
connection.close()
|
174 |
+
|
175 |
+
# Si la conexión es exitosa, crear motor SQLAlchemy
|
176 |
+
db_uri = f"mysql+pymysql://{db_user}:{db_password}@{db_host}/{db_name}"
|
177 |
+
logger.info("Database connection successful")
|
178 |
+
return SQLDatabase.from_uri(db_uri), ""
|
179 |
+
|
180 |
+
except Exception as e:
|
181 |
+
error_msg = f"Error connecting to database: {str(e)}"
|
182 |
+
logger.error(error_msg)
|
183 |
+
return None, error_msg
|
184 |
+
|
185 |
+
def initialize_llm():
|
186 |
+
"""Inicializa el modelo de lenguaje."""
|
187 |
+
if not DEPENDENCIES_AVAILABLE:
|
188 |
+
error_msg = "Dependencies not available. Make sure all required packages are installed."
|
189 |
+
logger.error(error_msg)
|
190 |
+
return None, error_msg
|
191 |
+
|
192 |
+
google_api_key = os.getenv("GOOGLE_API_KEY")
|
193 |
+
logger.info(f"GOOGLE_API_KEY found: {'Yes' if google_api_key else 'No'}")
|
194 |
+
|
195 |
+
if not google_api_key:
|
196 |
+
error_msg = "GOOGLE_API_KEY not found in environment variables. Please check your Hugging Face Space secrets."
|
197 |
+
logger.error(error_msg)
|
198 |
+
return None, error_msg
|
199 |
+
|
200 |
+
try:
|
201 |
+
logger.info("Initializing Google Generative AI...")
|
202 |
+
llm = ChatGoogleGenerativeAI(
|
203 |
+
model="gemini-2.0-flash",
|
204 |
+
temperature=0,
|
205 |
+
google_api_key=google_api_key,
|
206 |
+
convert_system_message_to_human=True # Convert system messages to human messages
|
207 |
+
)
|
208 |
+
|
209 |
+
# Test the model with a simple prompt
|
210 |
+
test_prompt = "Hello, this is a test."
|
211 |
+
logger.info(f"Testing model with prompt: {test_prompt}")
|
212 |
+
test_response = llm.invoke(test_prompt)
|
213 |
+
logger.info(f"Model test response: {str(test_response)[:100]}...") # Log first 100 chars
|
214 |
+
|
215 |
+
logger.info("Google Generative AI initialized successfully")
|
216 |
+
return llm, ""
|
217 |
+
|
218 |
+
except Exception as e:
|
219 |
+
error_msg = f"Error initializing Google Generative AI: {str(e)}"
|
220 |
+
logger.error(error_msg, exc_info=True) # Include full stack trace
|
221 |
+
return None, error_msg
|
222 |
+
|
223 |
+
def create_agent():
|
224 |
+
"""Crea el agente SQL si es posible."""
|
225 |
+
if not DEPENDENCIES_AVAILABLE:
|
226 |
+
error_msg = "Dependencies not available. Please check if all required packages are installed."
|
227 |
+
logger.error(error_msg)
|
228 |
+
return None, error_msg
|
229 |
+
|
230 |
+
logger.info("Starting agent creation process...")
|
231 |
+
|
232 |
+
def create_agent(llm, db_connection):
|
233 |
+
"""Create and return a SQL database agent with conversation memory."""
|
234 |
+
if not llm:
|
235 |
+
error_msg = "Cannot create agent: LLM is not available"
|
236 |
+
logger.error(error_msg)
|
237 |
+
return None, error_msg
|
238 |
+
|
239 |
+
if not db_connection:
|
240 |
+
error_msg = "Cannot create agent: Database connection is not available"
|
241 |
+
logger.error(error_msg)
|
242 |
+
return None, error_msg
|
243 |
+
|
244 |
+
try:
|
245 |
+
logger.info("Creating SQL agent with memory...")
|
246 |
+
|
247 |
+
# Create conversation memory
|
248 |
+
memory = ConversationBufferWindowMemory(
|
249 |
+
memory_key="chat_history",
|
250 |
+
k=5, # Keep last 5 message exchanges in memory
|
251 |
+
return_messages=True,
|
252 |
+
output_key="output"
|
253 |
+
)
|
254 |
+
|
255 |
+
# Create the database toolkit with additional configuration
|
256 |
+
toolkit = SQLDatabaseToolkit(
|
257 |
+
db=db_connection,
|
258 |
+
llm=llm
|
259 |
+
)
|
260 |
+
|
261 |
+
# Create the agent with memory and more detailed configuration
|
262 |
+
agent = create_sql_agent(
|
263 |
+
llm=llm,
|
264 |
+
toolkit=toolkit,
|
265 |
+
agent_type=AgentType.OPENAI_FUNCTIONS,
|
266 |
+
verbose=True,
|
267 |
+
handle_parsing_errors=True, # Better error handling for parsing
|
268 |
+
max_iterations=10, # Limit the number of iterations
|
269 |
+
early_stopping_method="generate", # Stop early if the agent is stuck
|
270 |
+
memory=memory, # Add memory to the agent
|
271 |
+
return_intermediate_steps=True # Important for memory to work properly
|
272 |
+
)
|
273 |
+
|
274 |
+
# Test the agent with a simple query
|
275 |
+
logger.info("Testing agent with a simple query...")
|
276 |
+
try:
|
277 |
+
test_query = "SELECT 1"
|
278 |
+
test_result = agent.run(test_query)
|
279 |
+
logger.info(f"Agent test query successful: {str(test_result)[:200]}...")
|
280 |
+
except Exception as e:
|
281 |
+
logger.warning(f"Agent test query failed (this might be expected): {str(e)}")
|
282 |
+
# Continue even if test fails, as it might be due to model limitations
|
283 |
+
|
284 |
+
logger.info("SQL agent created successfully")
|
285 |
+
return agent, ""
|
286 |
+
|
287 |
+
except Exception as e:
|
288 |
+
error_msg = f"Error creating SQL agent: {str(e)}"
|
289 |
+
logger.error(error_msg, exc_info=True)
|
290 |
+
return None, error_msg
|
291 |
+
|
292 |
+
# Inicializar el agente
|
293 |
+
logger.info("="*50)
|
294 |
+
logger.info("Starting application initialization...")
|
295 |
+
logger.info(f"Python version: {sys.version}")
|
296 |
+
logger.info(f"Current working directory: {os.getcwd()}")
|
297 |
+
logger.info(f"Files in working directory: {os.listdir()}")
|
298 |
+
|
299 |
+
# Verificar las variables de entorno
|
300 |
+
logger.info("Checking environment variables...")
|
301 |
+
for var in ["DB_USER", "DB_PASSWORD", "DB_HOST", "DB_NAME", "GOOGLE_API_KEY"]:
|
302 |
+
logger.info(f"{var}: {'*' * 8 if os.getenv(var) else 'NOT SET'}")
|
303 |
+
|
304 |
+
# Initialize components
|
305 |
+
logger.info("Initializing database connection...")
|
306 |
+
db_connection, db_error = setup_database_connection()
|
307 |
+
if db_error:
|
308 |
+
logger.error(f"Failed to initialize database: {db_error}")
|
309 |
+
|
310 |
+
logger.info("Initializing language model...")
|
311 |
+
llm, llm_error = initialize_llm()
|
312 |
+
if llm_error:
|
313 |
+
logger.error(f"Failed to initialize language model: {llm_error}")
|
314 |
+
|
315 |
+
logger.info("Initializing agent...")
|
316 |
+
agent, agent_error = create_agent(llm, db_connection)
|
317 |
+
db_connected = agent is not None
|
318 |
+
|
319 |
+
if agent:
|
320 |
+
logger.info("Agent initialized successfully")
|
321 |
+
else:
|
322 |
+
logger.error(f"Failed to initialize agent: {agent_error}")
|
323 |
+
|
324 |
+
logger.info("="*50)
|
325 |
+
|
326 |
+
def looks_like_sql(s: str) -> bool:
|
327 |
+
"""Heuristic to check if a string looks like an executable SQL statement."""
|
328 |
+
if not s:
|
329 |
+
return False
|
330 |
+
s_strip = s.strip().lstrip("-- ")
|
331 |
+
# common starters
|
332 |
+
return bool(re.match(r"^(WITH|SELECT|INSERT|UPDATE|DELETE|CREATE|ALTER|DROP|TRUNCATE)\b", s_strip, re.IGNORECASE))
|
333 |
+
|
334 |
+
|
335 |
+
def extract_sql_query(text):
|
336 |
+
"""Extrae consultas SQL del texto. Acepta solo bloques etiquetados como ```sql
|
337 |
+
o cadenas que claramente parezcan SQL. Evita ejecutar texto genérico.
|
338 |
+
"""
|
339 |
+
if not text:
|
340 |
+
return None
|
341 |
+
|
342 |
+
# Buscar TODOS los bloques en backticks y elegir los que sean 'sql'
|
343 |
+
for m in re.finditer(r"```(\w+)?\s*(.*?)```", text, re.DOTALL | re.IGNORECASE):
|
344 |
+
lang = (m.group(1) or '').lower()
|
345 |
+
body = (m.group(2) or '').strip()
|
346 |
+
if lang in {"sql", "postgresql", "mysql"} and looks_like_sql(body):
|
347 |
+
return body
|
348 |
+
|
349 |
+
# Si no hay bloques etiquetados, buscar una consulta SQL simple con palabras clave
|
350 |
+
simple = re.search(r"(WITH|SELECT|INSERT|UPDATE|DELETE|CREATE|ALTER|DROP|TRUNCATE)[\s\S]*?;", text, re.IGNORECASE)
|
351 |
+
if simple:
|
352 |
+
candidate = simple.group(0).strip()
|
353 |
+
if looks_like_sql(candidate):
|
354 |
+
return candidate
|
355 |
+
|
356 |
+
return None
|
357 |
+
|
358 |
+
def execute_sql_query(query, db_connection):
|
359 |
+
"""Ejecuta una consulta SQL y devuelve los resultados como una cadena."""
|
360 |
+
if not db_connection:
|
361 |
+
return "Error: No hay conexión a la base de datos"
|
362 |
+
|
363 |
+
try:
|
364 |
+
with db_connection._engine.connect() as connection:
|
365 |
+
# Ensure SQLAlchemy receives a SQL expression
|
366 |
+
if sa_text is not None and isinstance(query, str):
|
367 |
+
result = connection.execute(sa_text(query))
|
368 |
+
else:
|
369 |
+
result = connection.execute(query)
|
370 |
+
|
371 |
+
# Fetch data and column names
|
372 |
+
columns = list(result.keys()) if hasattr(result, "keys") else []
|
373 |
+
rows = result.fetchall()
|
374 |
+
|
375 |
+
# Convertir los resultados a un formato legible
|
376 |
+
if not rows:
|
377 |
+
return "La consulta no devolvió resultados"
|
378 |
+
|
379 |
+
# Si es un solo resultado, devolverlo directamente
|
380 |
+
try:
|
381 |
+
if len(rows) == 1 and len(rows[0]) == 1:
|
382 |
+
return str(rows[0][0])
|
383 |
+
except Exception:
|
384 |
+
pass
|
385 |
+
|
386 |
+
# Si hay múltiples filas, formatear como tabla Markdown
|
387 |
+
try:
|
388 |
+
import pandas as pd
|
389 |
+
|
390 |
+
# Convert SQLAlchemy Row objects to list of dicts using column names
|
391 |
+
if columns:
|
392 |
+
data = [
|
393 |
+
{col: val for col, val in zip(columns, tuple(row))}
|
394 |
+
for row in rows
|
395 |
+
]
|
396 |
+
df = pd.DataFrame(data)
|
397 |
+
else:
|
398 |
+
# Fallback: let pandas infer columns
|
399 |
+
df = pd.DataFrame(rows)
|
400 |
+
|
401 |
+
# Prefer Markdown output for downstream chart parsing
|
402 |
+
try:
|
403 |
+
return df.to_markdown(index=False)
|
404 |
+
except Exception:
|
405 |
+
# If optional dependency 'tabulate' is missing, build a simple Markdown table
|
406 |
+
headers = list(map(str, df.columns))
|
407 |
+
header_line = "| " + " | ".join(headers) + " |"
|
408 |
+
sep_line = "| " + " | ".join(["---"] * len(headers)) + " |"
|
409 |
+
body_lines = []
|
410 |
+
for _, r in df.iterrows():
|
411 |
+
body_lines.append("| " + " | ".join(map(lambda v: str(v), r.values)) + " |")
|
412 |
+
return "\n".join([header_line, sep_line, *body_lines])
|
413 |
+
except ImportError:
|
414 |
+
# Si pandas no está disponible, usar formato simple
|
415 |
+
return "\n".join([str(row) for row in rows])
|
416 |
+
|
417 |
+
except Exception as e:
|
418 |
+
return f"Error ejecutando la consulta: {str(e)}"
|
419 |
+
|
420 |
+
def detect_chart_preferences(question: str) -> Tuple[bool, str]:
|
421 |
+
"""Detect whether the user is asking for a chart and infer desired type.
|
422 |
+
|
423 |
+
Returns (wants_chart, chart_type) where chart_type is one of
|
424 |
+
{'bar', 'pie', 'line', 'scatter', 'histogram'}.
|
425 |
+
Defaults to 'bar' when ambiguous.
|
426 |
+
"""
|
427 |
+
try:
|
428 |
+
q = (question or "").lower()
|
429 |
+
|
430 |
+
# Broad triggers indicating any chart request
|
431 |
+
chart_triggers = [
|
432 |
+
"grafico", "gráfico", "grafica", "gráfica", "chart", "graph",
|
433 |
+
"visualizacion", "visualización", "plot", "plotly", "diagrama"
|
434 |
+
]
|
435 |
+
wants_chart = any(k in q for k in chart_triggers)
|
436 |
+
|
437 |
+
# Specific type hints
|
438 |
+
if any(k in q for k in ["pastel", "pie", "circular", "donut", "dona", "anillo"]):
|
439 |
+
return wants_chart or True, "pie"
|
440 |
+
if any(k in q for k in ["linea", "línea", "line", "tendencia"]):
|
441 |
+
return wants_chart or True, "line"
|
442 |
+
if any(k in q for k in ["dispersión", "dispersion", "scatter", "puntos"]):
|
443 |
+
return wants_chart or True, "scatter"
|
444 |
+
if any(k in q for k in ["histograma", "histogram"]):
|
445 |
+
return wants_chart or True, "histogram"
|
446 |
+
if any(k in q for k in ["barra", "barras", "columnas", "column"]):
|
447 |
+
return wants_chart or True, "bar"
|
448 |
+
|
449 |
+
# Default
|
450 |
+
return wants_chart, "bar"
|
451 |
+
except Exception:
|
452 |
+
return False, "bar"
|
453 |
+
|
454 |
+
def generate_plot(data, x_col, y_col, title, x_label, y_label):
|
455 |
+
"""Generate a plot from data and return the file path."""
|
456 |
+
plt.figure(figsize=(10, 6))
|
457 |
+
plt.bar(data[x_col], data[y_col])
|
458 |
+
plt.title(title)
|
459 |
+
plt.xlabel(x_label)
|
460 |
+
plt.ylabel(y_label)
|
461 |
+
plt.xticks(rotation=45)
|
462 |
+
plt.tight_layout()
|
463 |
+
|
464 |
+
# Save to a temporary file
|
465 |
+
temp_dir = tempfile.mkdtemp()
|
466 |
+
plot_path = os.path.join(temp_dir, "plot.png")
|
467 |
+
plt.savefig(plot_path)
|
468 |
+
plt.close()
|
469 |
+
|
470 |
+
return plot_path
|
471 |
+
|
472 |
+
def convert_to_messages_format(chat_history):
|
473 |
+
"""Convert chat history to the format expected by Gradio 5.x"""
|
474 |
+
if not chat_history:
|
475 |
+
return []
|
476 |
+
|
477 |
+
messages = []
|
478 |
+
|
479 |
+
# If the first element is a list, assume it's in the old format
|
480 |
+
if isinstance(chat_history[0], list):
|
481 |
+
for msg in chat_history:
|
482 |
+
if isinstance(msg, list) and len(msg) == 2:
|
483 |
+
# Format: [user_msg, bot_msg]
|
484 |
+
user_msg, bot_msg = msg
|
485 |
+
if user_msg:
|
486 |
+
messages.append({"role": "user", "content": user_msg})
|
487 |
+
if bot_msg:
|
488 |
+
messages.append({"role": "assistant", "content": bot_msg})
|
489 |
+
else:
|
490 |
+
# Assume it's already in the correct format or can be used as is
|
491 |
+
for msg in chat_history:
|
492 |
+
if isinstance(msg, dict) and "role" in msg and "content" in msg:
|
493 |
+
messages.append(msg)
|
494 |
+
elif isinstance(msg, str):
|
495 |
+
# If it's a string, assume it's a user message
|
496 |
+
messages.append({"role": "user", "content": msg})
|
497 |
+
|
498 |
+
return messages
|
499 |
+
|
500 |
+
async def stream_agent_response(question: str, chat_history: List[List[str]]) -> Tuple[str, Optional["go.Figure"]]:
|
501 |
+
"""Procesa la pregunta del usuario y devuelve la respuesta del agente con memoria de conversación."""
|
502 |
+
global agent # Make sure we can modify the agent's memory
|
503 |
+
|
504 |
+
# Initialize response
|
505 |
+
response_text = ""
|
506 |
+
chart_fig = None
|
507 |
+
messages = []
|
508 |
+
|
509 |
+
# Add previous chat history in the correct format for the agent
|
510 |
+
for msg_pair in chat_history:
|
511 |
+
if len(msg_pair) >= 1 and msg_pair[0]: # User message
|
512 |
+
messages.append(HumanMessage(content=msg_pair[0]))
|
513 |
+
if len(msg_pair) >= 2 and msg_pair[1]: # Assistant message
|
514 |
+
messages.append(AIMessage(content=msg_pair[1]))
|
515 |
+
|
516 |
+
# Add current user's question
|
517 |
+
user_message = HumanMessage(content=question)
|
518 |
+
messages.append(user_message)
|
519 |
+
|
520 |
+
if not agent:
|
521 |
+
error_msg = (
|
522 |
+
"## ⚠️ Error: Agente no inicializado\n\n"
|
523 |
+
"No se pudo inicializar el agente de base de datos. Por favor, verifica que:\n"
|
524 |
+
"1. Todas las variables de entorno estén configuradas correctamente\n"
|
525 |
+
"2. La base de datos esté accesible\n"
|
526 |
+
f"3. El modelo de lenguaje esté disponible\n\n"
|
527 |
+
f"Error: {agent_error}"
|
528 |
+
)
|
529 |
+
return error_msg, None
|
530 |
+
|
531 |
+
# Update the agent's memory with the full conversation history
|
532 |
+
try:
|
533 |
+
# Rebuild agent memory from chat history pairs
|
534 |
+
if hasattr(agent, 'memory') and agent.memory is not None:
|
535 |
+
agent.memory.clear()
|
536 |
+
for i in range(0, len(messages)-1, 2): # (user, assistant)
|
537 |
+
if i+1 < len(messages):
|
538 |
+
agent.memory.save_context(
|
539 |
+
{"input": messages[i].content},
|
540 |
+
{"output": messages[i+1].content}
|
541 |
+
)
|
542 |
+
except Exception as e:
|
543 |
+
logger.error(f"Error updating agent memory: {str(e)}", exc_info=True)
|
544 |
+
|
545 |
+
try:
|
546 |
+
# Add empty assistant message that will be updated
|
547 |
+
assistant_message = {"role": "assistant", "content": ""}
|
548 |
+
messages.append(assistant_message)
|
549 |
+
|
550 |
+
# Execute the agent with proper error handling
|
551 |
+
try:
|
552 |
+
# Let the agent use its memory; don't pass raw chat_history
|
553 |
+
response = await agent.ainvoke({"input": question})
|
554 |
+
logger.info(f"Agent response type: {type(response)}")
|
555 |
+
logger.info(f"Agent response content: {str(response)[:500]}...")
|
556 |
+
|
557 |
+
# Handle different response formats
|
558 |
+
if hasattr(response, 'output') and response.output:
|
559 |
+
response_text = response.output
|
560 |
+
elif isinstance(response, str):
|
561 |
+
response_text = response
|
562 |
+
elif hasattr(response, 'get') and callable(response.get) and 'output' in response:
|
563 |
+
response_text = response['output']
|
564 |
+
else:
|
565 |
+
response_text = str(response)
|
566 |
+
|
567 |
+
# logger.info(f"Extracted response text: {response_text[:200]}...")
|
568 |
+
|
569 |
+
# # Check if the response contains an SQL query and it truly looks like SQL
|
570 |
+
# sql_query = extract_sql_query(response_text)
|
571 |
+
# if sql_query and looks_like_sql(sql_query):
|
572 |
+
# logger.info(f"Detected SQL query: {sql_query}")
|
573 |
+
# # Execute the query and update the response
|
574 |
+
# db_connection, _ = setup_database_connection()
|
575 |
+
# if db_connection:
|
576 |
+
# query_result = execute_sql_query(sql_query, db_connection)
|
577 |
+
|
578 |
+
# # Add the query and its result to the response
|
579 |
+
# response_text += f"\n\n### 🔍 Resultado de la consulta:\n```sql\n{sql_query}\n```\n\n{query_result}"
|
580 |
+
|
581 |
+
# # Try to generate an interactive chart if the result is tabular
|
582 |
+
# try:
|
583 |
+
# if isinstance(query_result, str) and '|' in query_result and '---' in query_result:
|
584 |
+
# # Convert markdown table to DataFrame
|
585 |
+
|
586 |
+
# # Clean up the markdown table
|
587 |
+
# lines = [line.strip() for line in query_result.split('\n')
|
588 |
+
# if line.strip() and '---' not in line and '|' in line]
|
589 |
+
# if len(lines) > 1: # At least header + 1 data row
|
590 |
+
# # Get column names from the first line
|
591 |
+
# columns = [col.strip() for col in lines[0].split('|')[1:-1]]
|
592 |
+
# # Get data rows
|
593 |
+
# data = []
|
594 |
+
# for line in lines[1:]:
|
595 |
+
# values = [val.strip() for val in line.split('|')[1:-1]]
|
596 |
+
# if len(values) == len(columns):
|
597 |
+
# data.append(dict(zip(columns, values)))
|
598 |
+
|
599 |
+
# if data and len(columns) >= 2:
|
600 |
+
# # Determine chart type from user's question
|
601 |
+
# _, desired_type = detect_chart_preferences(question)
|
602 |
+
|
603 |
+
# # Choose x/y columns (assume first is category, second numeric)
|
604 |
+
# x_col = columns[0]
|
605 |
+
# y_col = columns[1]
|
606 |
+
|
607 |
+
# # Coerce numeric values for y
|
608 |
+
# for row in data:
|
609 |
+
# try:
|
610 |
+
# row[y_col] = float(re.sub(r"[^0-9.\-]", "", str(row[y_col])))
|
611 |
+
# except Exception:
|
612 |
+
# pass
|
613 |
+
|
614 |
+
# chart_fig = generate_chart(
|
615 |
+
# data=data,
|
616 |
+
# chart_type=desired_type,
|
617 |
+
# x=x_col,
|
618 |
+
# y=y_col,
|
619 |
+
# title=f"{y_col} por {x_col}"
|
620 |
+
# )
|
621 |
+
# if chart_fig is not None:
|
622 |
+
# logger.info(f"Chart generated from SQL table: type={desired_type}, x={x_col}, y={y_col}, rows={len(data)}")
|
623 |
+
# except Exception as e:
|
624 |
+
# logger.error(f"Error generating chart: {str(e)}", exc_info=True)
|
625 |
+
# # Don't fail the whole request if chart generation fails
|
626 |
+
# response_text += "\n\n⚠️ No se pudo generar la visualización de los datos."
|
627 |
+
# else:
|
628 |
+
# response_text += "\n\n⚠️ No se pudo conectar a la base de datos para ejecutar la consulta."
|
629 |
+
# elif sql_query and not looks_like_sql(sql_query):
|
630 |
+
# logger.info("Detected code block but it does not look like SQL; skipping execution.")
|
631 |
+
|
632 |
+
# If we still have no chart but the user clearly wants one,
|
633 |
+
# try a second pass to get ONLY a SQL query from the agent and execute it.
|
634 |
+
if chart_fig is None:
|
635 |
+
wants_chart, default_type = detect_chart_preferences(question)
|
636 |
+
if wants_chart:
|
637 |
+
try:
|
638 |
+
logger.info("Second pass: asking agent for ONLY SQL query in fenced block.")
|
639 |
+
sql_only_prompt = (
|
640 |
+
"Devuelve SOLO la consulta SQL en un bloque ```sql``` para responder a: "
|
641 |
+
f"{question}. No incluyas explicación ni texto adicional."
|
642 |
+
)
|
643 |
+
sql_only_resp = await agent.ainvoke({"input": sql_only_prompt})
|
644 |
+
sql_only_text = str(sql_only_resp)
|
645 |
+
sql_query2 = extract_sql_query(sql_only_text)
|
646 |
+
if sql_query2 and looks_like_sql(sql_query2):
|
647 |
+
logger.info(f"Second pass SQL detected: {sql_query2}")
|
648 |
+
db_connection, _ = setup_database_connection()
|
649 |
+
if db_connection:
|
650 |
+
query_result = execute_sql_query(sql_query2, db_connection)
|
651 |
+
# Try to parse table-like text into DataFrame if possible
|
652 |
+
data = None
|
653 |
+
if isinstance(query_result, str):
|
654 |
+
try:
|
655 |
+
import pandas as pd
|
656 |
+
df = pd.read_csv(io.StringIO(query_result), sep="|")
|
657 |
+
data = df
|
658 |
+
except Exception:
|
659 |
+
pass
|
660 |
+
# As a fallback, don't rely on text table; just skip charting here
|
661 |
+
if data is not None and hasattr(data, "empty") and not data.empty:
|
662 |
+
# Heuristics: choose first column as x and second as y if numeric
|
663 |
+
x_col = data.columns[0]
|
664 |
+
# pick first numeric column different to x
|
665 |
+
y_col = None
|
666 |
+
for col in data.columns[1:]:
|
667 |
+
try:
|
668 |
+
pd.to_numeric(data[col])
|
669 |
+
y_col = col
|
670 |
+
break
|
671 |
+
except Exception:
|
672 |
+
continue
|
673 |
+
if y_col:
|
674 |
+
desired_type = default_type
|
675 |
+
chart_fig = generate_chart(
|
676 |
+
data=data,
|
677 |
+
chart_type=desired_type,
|
678 |
+
x=x_col,
|
679 |
+
y=y_col,
|
680 |
+
title=f"{y_col} por {x_col}"
|
681 |
+
)
|
682 |
+
if chart_fig is not None:
|
683 |
+
logger.info("Chart generated from second-pass SQL execution.")
|
684 |
+
else:
|
685 |
+
logger.info("No DB connection on second pass; skipping.")
|
686 |
+
except Exception as e:
|
687 |
+
logger.error(f"Second-pass SQL synthesis failed: {e}")
|
688 |
+
|
689 |
+
# Fallback: if user asked for a chart and we didn't get SQL or chart yet,
|
690 |
+
# parse the most recent assistant text for lines like "LABEL: NUMBER" (bulleted or plain).
|
691 |
+
if chart_fig is None:
|
692 |
+
wants_chart, desired_type = detect_chart_preferences(question)
|
693 |
+
if wants_chart:
|
694 |
+
# Find the most recent assistant message with usable numeric pairs
|
695 |
+
candidate_text = ""
|
696 |
+
if chat_history:
|
697 |
+
for pair in reversed(chat_history):
|
698 |
+
if len(pair) >= 2 and isinstance(pair[1], str) and pair[1].strip():
|
699 |
+
candidate_text = pair[1]
|
700 |
+
break
|
701 |
+
# Also consider current response_text as a data source
|
702 |
+
if not candidate_text and isinstance(response_text, str) and response_text.strip():
|
703 |
+
candidate_text = response_text
|
704 |
+
if candidate_text:
|
705 |
+
raw_lines = candidate_text.split('\n')
|
706 |
+
# Normalize lines: strip bullets and markdown symbols
|
707 |
+
norm_lines = []
|
708 |
+
for l in raw_lines:
|
709 |
+
s = l.strip()
|
710 |
+
if not s:
|
711 |
+
continue
|
712 |
+
s = s.lstrip("•*-\t ")
|
713 |
+
# Remove surrounding markdown emphasis from labels later
|
714 |
+
norm_lines.append(s)
|
715 |
+
data = []
|
716 |
+
for l in norm_lines:
|
717 |
+
# Accept patterns like "**LABEL**: 123" or "LABEL: 1,234"
|
718 |
+
m = re.match(r"^(.+?):\s*([0-9][0-9.,]*)$", l)
|
719 |
+
if m:
|
720 |
+
label = m.group(1).strip()
|
721 |
+
# Strip common markdown emphasis
|
722 |
+
label = re.sub(r"[*_`]+", "", label).strip()
|
723 |
+
try:
|
724 |
+
val = float(m.group(2).replace(',', ''))
|
725 |
+
except Exception:
|
726 |
+
continue
|
727 |
+
data.append({"label": label, "value": val})
|
728 |
+
logger.info(f"Fallback parse from text: extracted {len(data)} items for potential chart")
|
729 |
+
if len(data) >= 2:
|
730 |
+
chart_fig = generate_chart(
|
731 |
+
data=data,
|
732 |
+
chart_type=desired_type,
|
733 |
+
x="label",
|
734 |
+
y="value",
|
735 |
+
title="Distribución"
|
736 |
+
)
|
737 |
+
if chart_fig is not None:
|
738 |
+
logger.info(f"Chart generated from text fallback: type={desired_type}, items={len(data)}")
|
739 |
+
|
740 |
+
# Update the assistant's message with the response
|
741 |
+
assistant_message["content"] = response_text
|
742 |
+
|
743 |
+
except Exception as e:
|
744 |
+
error_msg = f"Error al ejecutar el agente: {str(e)}"
|
745 |
+
logger.error(error_msg, exc_info=True)
|
746 |
+
assistant_message["content"] = f"## ❌ Error\n\n{error_msg}"
|
747 |
+
|
748 |
+
# Return the message in the correct format for Gradio Chatbot
|
749 |
+
# Format: list of tuples where each tuple is (user_msg, bot_msg)
|
750 |
+
# For a single response, we return [(None, message)]
|
751 |
+
message_content = ""
|
752 |
+
|
753 |
+
if isinstance(assistant_message, dict) and "content" in assistant_message:
|
754 |
+
message_content = assistant_message["content"]
|
755 |
+
elif isinstance(assistant_message, str):
|
756 |
+
message_content = assistant_message
|
757 |
+
else:
|
758 |
+
message_content = str(assistant_message)
|
759 |
+
|
760 |
+
# Return the assistant's response and an optional interactive chart figure
|
761 |
+
if chart_fig is None:
|
762 |
+
logger.info("No chart generated for this turn.")
|
763 |
+
else:
|
764 |
+
logger.info("Returning a chart figure to UI.")
|
765 |
+
return message_content, chart_fig
|
766 |
+
|
767 |
+
except Exception as e:
|
768 |
+
error_msg = f"## ❌ Error\n\nOcurrió un error al procesar tu solicitud:\n\n```\n{str(e)}\n```"
|
769 |
+
logger.error(f"Error in stream_agent_response: {str(e)}", exc_info=True)
|
770 |
+
# Return error message and no chart
|
771 |
+
return error_msg, None
|
772 |
+
|
773 |
+
# Custom CSS for the app
|
774 |
+
custom_css = """
|
775 |
+
.gradio-container {
|
776 |
+
max-width: 1200px !important;
|
777 |
+
margin: 0 auto !important;
|
778 |
+
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen, Ubuntu, Cantarell, sans-serif;
|
779 |
+
}
|
780 |
+
|
781 |
+
#chatbot {
|
782 |
+
min-height: 500px;
|
783 |
+
border: 1px solid #e0e0e0;
|
784 |
+
border-radius: 8px;
|
785 |
+
margin-bottom: 20px;
|
786 |
+
padding: 20px;
|
787 |
+
background-color: #f9f9f9;
|
788 |
+
}
|
789 |
+
|
790 |
+
.user-message, .bot-message {
|
791 |
+
padding: 12px 16px;
|
792 |
+
border-radius: 18px;
|
793 |
+
margin: 8px 0;
|
794 |
+
max-width: 80%;
|
795 |
+
line-height: 1.5;
|
796 |
+
}
|
797 |
+
|
798 |
+
.user-message {
|
799 |
+
background-color: #007bff;
|
800 |
+
color: white;
|
801 |
+
margin-left: auto;
|
802 |
+
border-bottom-right-radius: 4px;
|
803 |
+
}
|
804 |
+
|
805 |
+
.bot-message {
|
806 |
+
background-color: #f1f1f1;
|
807 |
+
color: #333;
|
808 |
+
margin-right: auto;
|
809 |
+
border-bottom-left-radius: 4px;
|
810 |
+
}
|
811 |
+
|
812 |
+
#question-input textarea {
|
813 |
+
min-height: 50px !important;
|
814 |
+
border-radius: 8px !important;
|
815 |
+
padding: 12px !important;
|
816 |
+
font-size: 16px !important;
|
817 |
+
}
|
818 |
+
|
819 |
+
#send-button {
|
820 |
+
height: 100%;
|
821 |
+
background-color: #007bff !important;
|
822 |
+
color: white !important;
|
823 |
+
border: none !important;
|
824 |
+
border-radius: 8px !important;
|
825 |
+
font-weight: 500 !important;
|
826 |
+
transition: background-color 0.2s !important;
|
827 |
+
}
|
828 |
+
|
829 |
+
#send-button:hover {
|
830 |
+
background-color: #0056b3 !important;
|
831 |
+
}
|
832 |
+
|
833 |
+
.status-message {
|
834 |
+
text-align: center;
|
835 |
+
color: #666;
|
836 |
+
font-style: italic;
|
837 |
+
margin: 10px 0;
|
838 |
+
}
|
839 |
+
"""
|
840 |
+
|
841 |
+
def create_ui():
|
842 |
+
"""Crea y devuelve los componentes de la interfaz de usuario de Gradio."""
|
843 |
+
# Verificar el estado del entorno
|
844 |
+
env_ok, env_message = check_environment()
|
845 |
+
|
846 |
+
# Crear el tema personalizado
|
847 |
+
theme = gr.themes.Soft(
|
848 |
+
primary_hue="blue",
|
849 |
+
secondary_hue="indigo",
|
850 |
+
neutral_hue="slate"
|
851 |
+
)
|
852 |
+
|
853 |
+
with gr.Blocks(
|
854 |
+
css=custom_css,
|
855 |
+
title="Asistente de Base de Datos SQL",
|
856 |
+
theme=theme
|
857 |
+
) as demo:
|
858 |
+
# Encabezado
|
859 |
+
gr.Markdown("""
|
860 |
+
# 🤖 Asistente de Base de Datos SQL
|
861 |
+
|
862 |
+
Haz preguntas en lenguaje natural sobre tu base de datos y obtén resultados de consultas SQL.
|
863 |
+
""")
|
864 |
+
|
865 |
+
# Mensaje de estado
|
866 |
+
if not env_ok:
|
867 |
+
gr.Warning("⚠️ " + env_message)
|
868 |
+
|
869 |
+
# Create the chat interface
|
870 |
+
with gr.Row():
|
871 |
+
chatbot = gr.Chatbot(
|
872 |
+
value=[],
|
873 |
+
elem_id="chatbot",
|
874 |
+
type="messages", # migrate to messages format to avoid deprecation
|
875 |
+
avatar_images=(
|
876 |
+
None,
|
877 |
+
(os.path.join(os.path.dirname(__file__), "logo.svg")),
|
878 |
+
),
|
879 |
+
height=600,
|
880 |
+
render_markdown=True, # Enable markdown rendering
|
881 |
+
show_label=False,
|
882 |
+
show_share_button=False,
|
883 |
+
container=True,
|
884 |
+
layout="panel" # Better layout for messages
|
885 |
+
)
|
886 |
+
|
887 |
+
# Chart display area (interactive Plotly figure)
|
888 |
+
# In Gradio 5, gr.Plot accepts a plotly.graph_objects.Figure
|
889 |
+
chart_display = gr.Plot(
|
890 |
+
label="📊 Visualización",
|
891 |
+
)
|
892 |
+
|
893 |
+
# Input area
|
894 |
+
with gr.Row():
|
895 |
+
question_input = gr.Textbox(
|
896 |
+
label="",
|
897 |
+
placeholder="Escribe tu pregunta aquí...",
|
898 |
+
container=False,
|
899 |
+
scale=5,
|
900 |
+
min_width=300,
|
901 |
+
max_lines=3,
|
902 |
+
autofocus=True,
|
903 |
+
elem_id="question-input"
|
904 |
+
)
|
905 |
+
submit_button = gr.Button(
|
906 |
+
"Enviar",
|
907 |
+
variant="primary",
|
908 |
+
min_width=100,
|
909 |
+
scale=1,
|
910 |
+
elem_id="send-button"
|
911 |
+
)
|
912 |
+
|
913 |
+
# System status
|
914 |
+
with gr.Accordion("ℹ️ Estado del sistema", open=not env_ok):
|
915 |
+
if not DEPENDENCIES_AVAILABLE:
|
916 |
+
gr.Markdown("""
|
917 |
+
## ❌ Dependencias faltantes
|
918 |
+
|
919 |
+
Para ejecutar esta aplicación localmente, necesitas instalar las dependencias:
|
920 |
+
|
921 |
+
```bash
|
922 |
+
pip install -r requirements.txt
|
923 |
+
```
|
924 |
+
""")
|
925 |
+
else:
|
926 |
+
if not agent:
|
927 |
+
gr.Markdown(f"""
|
928 |
+
## ⚠️ Configuración incompleta
|
929 |
+
|
930 |
+
No se pudo inicializar el agente de base de datos. Por favor, verifica que:
|
931 |
+
|
932 |
+
1. Todas las variables de entorno estén configuradas correctamente
|
933 |
+
2. La base de datos esté accesible
|
934 |
+
3. La API de Google Gemini esté configurada
|
935 |
+
|
936 |
+
**Error:** {agent_error if agent_error else 'No se pudo determinar el error'}
|
937 |
+
|
938 |
+
### Configuración local
|
939 |
+
|
940 |
+
Crea un archivo `.env` en la raíz del proyecto con las siguientes variables:
|
941 |
+
|
942 |
+
```
|
943 |
+
DB_USER=tu_usuario
|
944 |
+
DB_PASSWORD=tu_contraseña
|
945 |
+
DB_HOST=tu_servidor
|
946 |
+
DB_NAME=tu_base_de_datos
|
947 |
+
GOOGLE_API_KEY=tu_api_key_de_google
|
948 |
+
```
|
949 |
+
""")
|
950 |
+
else:
|
951 |
+
if os.getenv('SPACE_ID'):
|
952 |
+
# Modo demo en Hugging Face Spaces
|
953 |
+
gr.Markdown("""
|
954 |
+
## 🚀 Modo Demo
|
955 |
+
|
956 |
+
Esta es una demostración del asistente de base de datos SQL. Para usar la versión completa con conexión a base de datos:
|
957 |
+
|
958 |
+
1. Clona este espacio en tu cuenta de Hugging Face
|
959 |
+
2. Configura las variables de entorno en la configuración del espacio:
|
960 |
+
- `DB_USER`: Tu usuario de base de datos
|
961 |
+
- `DB_PASSWORD`: Tu contraseña de base de datos
|
962 |
+
- `DB_HOST`: La dirección del servidor de base de datos
|
963 |
+
- `DB_NAME`: El nombre de la base de datos
|
964 |
+
- `GOOGLE_API_KEY`: Tu clave de API de Google Gemini
|
965 |
+
|
966 |
+
**Nota:** Actualmente estás en modo de solo demostración.
|
967 |
+
""")
|
968 |
+
else:
|
969 |
+
gr.Markdown("""
|
970 |
+
## ✅ Sistema listo
|
971 |
+
|
972 |
+
El asistente está listo para responder tus preguntas sobre la base de datos.
|
973 |
+
""")
|
974 |
+
|
975 |
+
# Hidden component for streaming output
|
976 |
+
streaming_output_display = gr.Textbox(visible=False)
|
977 |
+
|
978 |
+
return demo, chatbot, chart_display, question_input, submit_button, streaming_output_display
|
979 |
|
980 |
def create_application():
|
981 |
"""Create and configure the Gradio application."""
|
982 |
# Create the UI components
|
983 |
demo, chatbot, chart_display, question_input, submit_button, streaming_output_display = create_ui()
|
984 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
985 |
def user_message(user_input: str, chat_history: List[Dict[str, str]]) -> Tuple[str, List[Dict[str, str]]]:
|
986 |
"""Add user message to chat history (messages format) and clear input."""
|
987 |
if not user_input.strip():
|
|
|
1034 |
# Append assistant message back into messages history
|
1035 |
chat_history.append({"role": "assistant", "content": assistant_message})
|
1036 |
|
1037 |
+
# If user asked for a chart but none was produced, try to build one
|
1038 |
+
# from the latest assistant text using the same fallback logic.
|
1039 |
+
if chart_fig is None:
|
1040 |
+
wants_chart, desired_type = detect_chart_preferences(question)
|
1041 |
+
if wants_chart and isinstance(assistant_message, str):
|
1042 |
+
candidate_text = assistant_message
|
1043 |
+
raw_lines = candidate_text.split('\n')
|
1044 |
+
norm_lines = []
|
1045 |
+
for l in raw_lines:
|
1046 |
+
s = l.strip().lstrip("•*\t -")
|
1047 |
+
if s:
|
1048 |
+
norm_lines.append(s)
|
1049 |
+
data = []
|
1050 |
+
for l in norm_lines:
|
1051 |
+
m = re.match(r"^(.+?):\s*([0-9][0-9.,]*)$", l)
|
1052 |
+
if m:
|
1053 |
+
label = re.sub(r"[*_`]+", "", m.group(1)).strip()
|
1054 |
+
try:
|
1055 |
+
val = float(m.group(2).replace(',', ''))
|
1056 |
+
except Exception:
|
1057 |
+
continue
|
1058 |
+
data.append({"label": label, "value": val})
|
1059 |
+
if len(data) >= 2:
|
1060 |
+
chart_fig = generate_chart(
|
1061 |
+
data=data,
|
1062 |
+
chart_type=desired_type,
|
1063 |
+
x="label",
|
1064 |
+
y="value",
|
1065 |
+
title="Distribución"
|
1066 |
+
)
|
1067 |
+
|
1068 |
logger.info("Response generation complete")
|
1069 |
return chat_history, chart_fig
|
1070 |
|
requirements.txt
CHANGED
@@ -15,4 +15,3 @@ python-multipart>=0.0.18 # Required by gradio
|
|
15 |
plotly==5.18.0 # For interactive charts
|
16 |
kaleido==0.2.1 # For saving plotly charts as images
|
17 |
tabulate>=0.9.0 # Enables DataFrame.to_markdown used for chart parsing
|
18 |
-
flask>=2.0.0 # Required for API endpoints
|
|
|
15 |
plotly==5.18.0 # For interactive charts
|
16 |
kaleido==0.2.1 # For saving plotly charts as images
|
17 |
tabulate>=0.9.0 # Enables DataFrame.to_markdown used for chart parsing
|
|