Jeremy Live
commited on
Commit
·
cdd4766
1
Parent(s):
af9a042
Revert "quito logica de ejecutar la consulta"
Browse filesThis reverts commit af9a0423088ef5970342a9e0e944871527d6b479.
app.py
CHANGED
@@ -542,14 +542,79 @@ async def stream_agent_response(question: str, chat_history: List[List[str]]) ->
|
|
542 |
# Check if the response contains an SQL query and it truly looks like SQL
|
543 |
sql_query = extract_sql_query(response_text)
|
544 |
if sql_query and looks_like_sql(sql_query):
|
545 |
-
logger.info("SQL query
|
546 |
-
|
547 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
548 |
elif sql_query and not looks_like_sql(sql_query):
|
549 |
logger.info("Detected code block but it does not look like SQL; skipping execution.")
|
550 |
|
551 |
# If we still have no chart but the user clearly wants one,
|
552 |
-
# try a second pass to get ONLY a SQL query from the agent and
|
553 |
if chart_fig is None:
|
554 |
q_lower = question.lower()
|
555 |
wants_chart = any(k in q_lower for k in ["gráfico", "grafico", "chart", "graph", "pastel", "pie"])
|
@@ -564,12 +629,40 @@ async def stream_agent_response(question: str, chat_history: List[List[str]]) ->
|
|
564 |
sql_only_text = str(sql_only_resp)
|
565 |
sql_query2 = extract_sql_query(sql_only_text)
|
566 |
if sql_query2 and looks_like_sql(sql_query2):
|
567 |
-
logger.info("Second pass SQL detected
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
573 |
except Exception as e:
|
574 |
logger.error(f"Second-pass SQL synthesis failed: {e}")
|
575 |
|
|
|
542 |
# Check if the response contains an SQL query and it truly looks like SQL
|
543 |
sql_query = extract_sql_query(response_text)
|
544 |
if sql_query and looks_like_sql(sql_query):
|
545 |
+
logger.info(f"Detected SQL query: {sql_query}")
|
546 |
+
db_connection, _ = setup_database_connection()
|
547 |
+
if db_connection:
|
548 |
+
query_result = execute_sql_query(sql_query, db_connection)
|
549 |
+
|
550 |
+
# Add the query and its result to the response
|
551 |
+
response_text += f"\n\n### 🔍 Resultado de la consulta:\n```sql\n{sql_query}\n```\n\n{query_result}"
|
552 |
+
|
553 |
+
# Try to generate an interactive chart if the result is tabular
|
554 |
+
try:
|
555 |
+
if isinstance(query_result, str) and '|' in query_result and '---' in query_result:
|
556 |
+
# Convert markdown table to DataFrame
|
557 |
+
|
558 |
+
# Clean up the markdown table
|
559 |
+
lines = [line.strip() for line in query_result.split('\n')
|
560 |
+
if line.strip() and '---' not in line and '|' in line]
|
561 |
+
if len(lines) > 1: # At least header + 1 data row
|
562 |
+
# Get column names from the first line
|
563 |
+
columns = [col.strip() for col in lines[0].split('|')[1:-1]]
|
564 |
+
# Get data rows
|
565 |
+
data = []
|
566 |
+
for line in lines[1:]:
|
567 |
+
values = [val.strip() for val in line.split('|')[1:-1]]
|
568 |
+
if len(values) == len(columns):
|
569 |
+
data.append(dict(zip(columns, values)))
|
570 |
+
|
571 |
+
if data and len(columns) >= 2:
|
572 |
+
# Determine chart type from user's question (supports pie chart)
|
573 |
+
q_lower = question.lower()
|
574 |
+
if any(k in q_lower for k in ["gráfico circular", "grafico circular", "pie", "pastel"]):
|
575 |
+
desired_type = 'pie'
|
576 |
+
elif any(k in q_lower for k in ["línea", "linea", "line"]):
|
577 |
+
desired_type = 'line'
|
578 |
+
elif any(k in q_lower for k in ["dispersión", "dispersion", "scatter"]):
|
579 |
+
desired_type = 'scatter'
|
580 |
+
elif any(k in q_lower for k in ["histograma", "histogram"]):
|
581 |
+
desired_type = 'histogram'
|
582 |
+
else:
|
583 |
+
desired_type = 'bar'
|
584 |
+
|
585 |
+
# Choose x/y columns (assume first is category, second numeric)
|
586 |
+
x_col = columns[0]
|
587 |
+
# pick first numeric column different to x
|
588 |
+
y_col = None
|
589 |
+
for col in columns[1:]:
|
590 |
+
try:
|
591 |
+
pd.to_numeric(data[0][col])
|
592 |
+
y_col = col
|
593 |
+
break
|
594 |
+
except Exception:
|
595 |
+
continue
|
596 |
+
if y_col:
|
597 |
+
chart_fig = generate_chart(
|
598 |
+
data=data,
|
599 |
+
chart_type=desired_type,
|
600 |
+
x=x_col,
|
601 |
+
y=y_col,
|
602 |
+
title=f"{y_col} por {x_col}"
|
603 |
+
)
|
604 |
+
if chart_fig is not None:
|
605 |
+
logger.info(f"Chart generated from SQL table: type={desired_type}, x={x_col}, y={y_col}, rows={len(data)}")
|
606 |
+
chart_state = {"data": data, "x_col": x_col, "y_col": y_col, "title": f"{y_col} por {x_col}", "chart_type": desired_type}
|
607 |
+
except Exception as e:
|
608 |
+
logger.error(f"Error generating chart: {str(e)}", exc_info=True)
|
609 |
+
# Don't fail the whole request if chart generation fails
|
610 |
+
response_text += "\n\n⚠️ No se pudo generar la visualización de los datos."
|
611 |
+
else:
|
612 |
+
response_text += "\n\n⚠️ No se pudo conectar a la base de datos para ejecutar la consulta."
|
613 |
elif sql_query and not looks_like_sql(sql_query):
|
614 |
logger.info("Detected code block but it does not look like SQL; skipping execution.")
|
615 |
|
616 |
# If we still have no chart but the user clearly wants one,
|
617 |
+
# try a second pass to get ONLY a SQL query from the agent and execute it.
|
618 |
if chart_fig is None:
|
619 |
q_lower = question.lower()
|
620 |
wants_chart = any(k in q_lower for k in ["gráfico", "grafico", "chart", "graph", "pastel", "pie"])
|
|
|
629 |
sql_only_text = str(sql_only_resp)
|
630 |
sql_query2 = extract_sql_query(sql_only_text)
|
631 |
if sql_query2 and looks_like_sql(sql_query2):
|
632 |
+
logger.info(f"Second pass SQL detected: {sql_query2}")
|
633 |
+
db_connection, _ = setup_database_connection()
|
634 |
+
if db_connection:
|
635 |
+
query_result = execute_sql_query(sql_query2, db_connection)
|
636 |
+
# Append query and result to response_text for transparency
|
637 |
+
response_text += f"\n\n### 🔍 Resultado de la consulta (2ª pasada):\n```sql\n{sql_query2}\n```\n\n{query_result}"
|
638 |
+
# Try robust markdown table parse
|
639 |
+
data_list = parse_markdown_table(query_result) if isinstance(query_result, str) else None
|
640 |
+
if data_list:
|
641 |
+
# Infer columns
|
642 |
+
columns = list(data_list[0].keys())
|
643 |
+
x_col = columns[0]
|
644 |
+
y_col = None
|
645 |
+
for col in columns[1:]:
|
646 |
+
try:
|
647 |
+
pd.to_numeric(data_list[0][col])
|
648 |
+
y_col = col
|
649 |
+
break
|
650 |
+
except Exception:
|
651 |
+
continue
|
652 |
+
if y_col:
|
653 |
+
desired_type = 'pie' if any(k in q_lower for k in ["gráfico circular", "grafico circular", "pie", "pastel"]) else 'bar'
|
654 |
+
chart_fig = generate_chart(
|
655 |
+
data=data_list,
|
656 |
+
chart_type=desired_type,
|
657 |
+
x=x_col,
|
658 |
+
y=y_col,
|
659 |
+
title=f"{y_col} por {x_col}"
|
660 |
+
)
|
661 |
+
if chart_fig is not None:
|
662 |
+
logger.info("Chart generated from second-pass SQL execution (markdown parse).")
|
663 |
+
chart_state = {"data": data_list, "x_col": x_col, "y_col": y_col, "title": f"{y_col} por {x_col}", "chart_type": desired_type}
|
664 |
+
else:
|
665 |
+
logger.info("No DB connection on second pass; skipping.")
|
666 |
except Exception as e:
|
667 |
logger.error(f"Second-pass SQL synthesis failed: {e}")
|
668 |
|