Jeremy Live
commited on
Commit
·
f639c56
1
Parent(s):
5c3160e
template
Browse files- README.md +104 -13
- app.py +517 -0
- requirements.txt +9 -0
README.md
CHANGED
@@ -1,13 +1,104 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Chatbot Agent with SQL and Gemini Integration
|
2 |
+
|
3 |
+
[](https://opensource.org/licenses/MIT)
|
4 |
+
[](https://www.python.org/downloads/)
|
5 |
+
[](https://gradio.app/)
|
6 |
+
|
7 |
+
A powerful chatbot agent that integrates Google's Gemini language model with SQL database connectivity, enabling natural language to SQL query conversion and data visualization.
|
8 |
+
|
9 |
+
## 🌟 Features
|
10 |
+
|
11 |
+
- **Natural Language to SQL**: Convert natural language questions into SQL queries
|
12 |
+
- **Database Integration**: Connect to MySQL databases seamlessly
|
13 |
+
- **Interactive Chat Interface**: User-friendly Gradio-based web interface
|
14 |
+
- **Data Visualization**: Generate visualizations from query results
|
15 |
+
- **Environment Configuration**: Easy setup with environment variables
|
16 |
+
|
17 |
+
## 🚀 Quick Start
|
18 |
+
|
19 |
+
### Prerequisites
|
20 |
+
|
21 |
+
- Python 3.8 or higher
|
22 |
+
- MySQL database (or compatible database)
|
23 |
+
- Google API key for Gemini
|
24 |
+
|
25 |
+
### Installation
|
26 |
+
|
27 |
+
1. Clone the repository:
|
28 |
+
```bash
|
29 |
+
git clone https://github.com/yourusername/chatbot-agent-sql-gemini.git
|
30 |
+
cd chatbot-agent-sql-gemini
|
31 |
+
```
|
32 |
+
|
33 |
+
2. Install dependencies:
|
34 |
+
```bash
|
35 |
+
pip install -r requirements.txt
|
36 |
+
```
|
37 |
+
|
38 |
+
3. Create a `.env` file in the project root with your configuration:
|
39 |
+
```env
|
40 |
+
DB_USER=your_db_username
|
41 |
+
DB_PASSWORD=your_db_password
|
42 |
+
DB_HOST=your_db_host
|
43 |
+
DB_NAME=your_database_name
|
44 |
+
GOOGLE_API_KEY=your_google_api_key
|
45 |
+
```
|
46 |
+
|
47 |
+
### Running the Application
|
48 |
+
|
49 |
+
1. Start the application:
|
50 |
+
```bash
|
51 |
+
python app.py
|
52 |
+
```
|
53 |
+
|
54 |
+
2. Open your web browser and navigate to `http://localhost:7860`
|
55 |
+
|
56 |
+
## 🛠️ Configuration
|
57 |
+
|
58 |
+
The application can be configured using the following environment variables:
|
59 |
+
|
60 |
+
| Variable | Description | Required |
|
61 |
+
|----------|-------------|----------|
|
62 |
+
| `DB_USER` | Database username | ✅ |
|
63 |
+
| `DB_PASSWORD` | Database password | ✅ |
|
64 |
+
| `DB_HOST` | Database host | ✅ |
|
65 |
+
| `DB_NAME` | Database name | ✅ |
|
66 |
+
| `GOOGLE_API_KEY` | Google API key for Gemini | ✅ |
|
67 |
+
|
68 |
+
## 📦 Dependencies
|
69 |
+
|
70 |
+
- gradio >= 3.0.0
|
71 |
+
- langchain >= 0.1.0
|
72 |
+
- langchain-community >= 0.0.10
|
73 |
+
- langchain-google-genai >= 0.1.0
|
74 |
+
- langgraph >= 0.0.0
|
75 |
+
- matplotlib >= 3.7.0
|
76 |
+
- pandas >= 2.0.0
|
77 |
+
- sqlalchemy >= 2.0.0
|
78 |
+
- python-dotenv >= 1.0.0
|
79 |
+
|
80 |
+
## 🤖 How It Works
|
81 |
+
|
82 |
+
1. The application connects to your SQL database using the provided credentials
|
83 |
+
2. Users input natural language questions through the Gradio interface
|
84 |
+
3. The Gemini model converts these questions into SQL queries
|
85 |
+
4. Queries are executed against the database
|
86 |
+
5. Results are formatted and displayed to the user
|
87 |
+
6. For appropriate data, visualizations are automatically generated
|
88 |
+
|
89 |
+
## 📝 Example Queries
|
90 |
+
|
91 |
+
- "Show me the top 10 customers by total purchases"
|
92 |
+
- "What were our total sales last month?"
|
93 |
+
- "List all products with stock below minimum levels"
|
94 |
+
- "Generate a bar chart of monthly sales for the past year"
|
95 |
+
|
96 |
+
## 📄 License
|
97 |
+
|
98 |
+
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
|
99 |
+
|
100 |
+
## 🙏 Acknowledgments
|
101 |
+
|
102 |
+
- [Gradio](https://gradio.app/) for the web interface
|
103 |
+
- [Google Gemini](https://ai.google.dev/) for the language model
|
104 |
+
- [LangChain](https://www.langchain.com/) for the agent framework
|
app.py
ADDED
@@ -0,0 +1,517 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
import json
|
4 |
+
from typing import List, Dict, Any, Optional, Tuple
|
5 |
+
import logging
|
6 |
+
|
7 |
+
try:
|
8 |
+
# Intentar importar dependencias opcionales
|
9 |
+
from langchain_community.agent_toolkits import create_sql_agent
|
10 |
+
from langchain_community.utilities import SQLDatabase
|
11 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
12 |
+
from langchain.agents.agent_types import AgentType
|
13 |
+
import pymysql
|
14 |
+
from dotenv import load_dotenv
|
15 |
+
|
16 |
+
DEPENDENCIES_AVAILABLE = True
|
17 |
+
except ImportError:
|
18 |
+
# Si faltan dependencias, la aplicación funcionará en modo demo
|
19 |
+
DEPENDENCIES_AVAILABLE = False
|
20 |
+
|
21 |
+
# Configuración de logging
|
22 |
+
logging.basicConfig(level=logging.INFO)
|
23 |
+
logger = logging.getLogger(__name__)
|
24 |
+
|
25 |
+
# Configure logging
|
26 |
+
logging.basicConfig(level=logging.INFO)
|
27 |
+
logger = logging.getLogger(__name__)
|
28 |
+
|
29 |
+
def check_environment():
|
30 |
+
"""Verifica si el entorno está configurado correctamente."""
|
31 |
+
if not DEPENDENCIES_AVAILABLE:
|
32 |
+
return False, "Missing required Python packages. Please install them with: pip install -r requirements.txt"
|
33 |
+
|
34 |
+
# Verificar si estamos en un entorno con variables de entorno
|
35 |
+
required_vars = ["DB_USER", "DB_PASSWORD", "DB_HOST", "DB_NAME", "GOOGLE_API_KEY"]
|
36 |
+
missing_vars = [var for var in required_vars if not os.getenv(var)]
|
37 |
+
|
38 |
+
if missing_vars:
|
39 |
+
return False, f"Missing required environment variables: {', '.join(missing_vars)}"
|
40 |
+
|
41 |
+
return True, "Environment is properly configured"
|
42 |
+
|
43 |
+
def setup_database_connection():
|
44 |
+
"""Intenta establecer una conexión a la base de datos."""
|
45 |
+
if not DEPENDENCIES_AVAILABLE:
|
46 |
+
return None, "Dependencies not available"
|
47 |
+
|
48 |
+
try:
|
49 |
+
load_dotenv(override=True)
|
50 |
+
|
51 |
+
db_user = os.getenv("DB_USER")
|
52 |
+
db_password = os.getenv("DB_PASSWORD")
|
53 |
+
db_host = os.getenv("DB_HOST")
|
54 |
+
db_name = os.getenv("DB_NAME")
|
55 |
+
|
56 |
+
if not all([db_user, db_password, db_host, db_name]):
|
57 |
+
return None, "Missing database configuration"
|
58 |
+
|
59 |
+
logger.info(f"Connecting to database: {db_user}@{db_host}/{db_name}")
|
60 |
+
|
61 |
+
# Probar conexión
|
62 |
+
connection = pymysql.connect(
|
63 |
+
host=db_host,
|
64 |
+
user=db_user,
|
65 |
+
password=db_password,
|
66 |
+
database=db_name,
|
67 |
+
connect_timeout=5,
|
68 |
+
cursorclass=pymysql.cursors.DictCursor
|
69 |
+
)
|
70 |
+
connection.close()
|
71 |
+
|
72 |
+
# Si la conexión es exitosa, crear motor SQLAlchemy
|
73 |
+
db_uri = f"mysql+pymysql://{db_user}:{db_password}@{db_host}/{db_name}"
|
74 |
+
logger.info("Database connection successful")
|
75 |
+
return SQLDatabase.from_uri(db_uri), ""
|
76 |
+
|
77 |
+
except Exception as e:
|
78 |
+
error_msg = f"Error connecting to database: {str(e)}"
|
79 |
+
logger.error(error_msg)
|
80 |
+
return None, error_msg
|
81 |
+
|
82 |
+
def initialize_llm():
|
83 |
+
"""Inicializa el modelo de lenguaje."""
|
84 |
+
if not DEPENDENCIES_AVAILABLE:
|
85 |
+
return None, "Dependencies not available"
|
86 |
+
|
87 |
+
google_api_key = os.getenv("GOOGLE_API_KEY")
|
88 |
+
if not google_api_key:
|
89 |
+
return None, "GOOGLE_API_KEY not found in environment variables"
|
90 |
+
|
91 |
+
try:
|
92 |
+
llm = ChatGoogleGenerativeAI(
|
93 |
+
model="gemini-2.0-flash",
|
94 |
+
temperature=0,
|
95 |
+
google_api_key=google_api_key
|
96 |
+
)
|
97 |
+
logger.info("Google Generative AI initialized successfully")
|
98 |
+
return llm, ""
|
99 |
+
except Exception as e:
|
100 |
+
error_msg = f"Error initializing Google Generative AI: {str(e)}"
|
101 |
+
logger.error(error_msg)
|
102 |
+
return None, error_msg
|
103 |
+
|
104 |
+
def create_agent():
|
105 |
+
"""Crea el agente SQL si es posible."""
|
106 |
+
if not DEPENDENCIES_AVAILABLE:
|
107 |
+
return None, "Dependencies not available"
|
108 |
+
|
109 |
+
db, db_error = setup_database_connection()
|
110 |
+
llm, llm_error = initialize_llm()
|
111 |
+
|
112 |
+
if not db or not llm:
|
113 |
+
error_msg = " | ".join(filter(None, [db_error, llm_error]))
|
114 |
+
return None, f"Cannot create agent: {error_msg}"
|
115 |
+
|
116 |
+
try:
|
117 |
+
logger.info("Creating SQL agent...")
|
118 |
+
agent = create_sql_agent(
|
119 |
+
llm=llm,
|
120 |
+
db=db,
|
121 |
+
agent_type=AgentType.OPENAI_FUNCTIONS,
|
122 |
+
verbose=True
|
123 |
+
)
|
124 |
+
logger.info("SQL agent created successfully")
|
125 |
+
return agent, ""
|
126 |
+
except Exception as e:
|
127 |
+
error_msg = f"Error creating SQL agent: {str(e)}"
|
128 |
+
logger.error(error_msg)
|
129 |
+
return None, error_msg
|
130 |
+
|
131 |
+
# Inicializar el agente
|
132 |
+
agent, agent_error = create_agent()
|
133 |
+
db_connected = agent is not None
|
134 |
+
|
135 |
+
def extract_sql_query(text):
|
136 |
+
"""Extrae consultas SQL del texto usando expresiones regulares."""
|
137 |
+
if not text:
|
138 |
+
return None
|
139 |
+
|
140 |
+
# Buscar código SQL entre backticks
|
141 |
+
sql_match = re.search(r'```(?:sql)?\s*(.*?)```', text, re.DOTALL)
|
142 |
+
if sql_match:
|
143 |
+
return sql_match.group(1).strip()
|
144 |
+
|
145 |
+
# Si no hay backticks, buscar una consulta SQL simple
|
146 |
+
sql_match = re.search(r'(SELECT|INSERT|UPDATE|DELETE|CREATE|ALTER|DROP|TRUNCATE).*?;', text, re.IGNORECASE | re.DOTALL)
|
147 |
+
if sql_match:
|
148 |
+
return sql_match.group(0).strip()
|
149 |
+
|
150 |
+
return None
|
151 |
+
|
152 |
+
def execute_sql_query(query, db_connection):
|
153 |
+
"""Ejecuta una consulta SQL y devuelve los resultados como una cadena."""
|
154 |
+
if not db_connection:
|
155 |
+
return "Error: No hay conexión a la base de datos"
|
156 |
+
|
157 |
+
try:
|
158 |
+
with db_connection._engine.connect() as connection:
|
159 |
+
result = connection.execute(query)
|
160 |
+
rows = result.fetchall()
|
161 |
+
|
162 |
+
# Convertir los resultados a un formato legible
|
163 |
+
if not rows:
|
164 |
+
return "La consulta no devolvió resultados"
|
165 |
+
|
166 |
+
# Si es un solo resultado, devolverlo directamente
|
167 |
+
if len(rows) == 1 and len(rows[0]) == 1:
|
168 |
+
return str(rows[0][0])
|
169 |
+
|
170 |
+
# Si hay múltiples filas, formatear como tabla
|
171 |
+
try:
|
172 |
+
import pandas as pd
|
173 |
+
df = pd.DataFrame(rows)
|
174 |
+
return df.to_markdown(index=False)
|
175 |
+
except ImportError:
|
176 |
+
# Si pandas no está disponible, usar formato simple
|
177 |
+
return "\n".join([str(row) for row in rows])
|
178 |
+
|
179 |
+
except Exception as e:
|
180 |
+
return f"Error ejecutando la consulta: {str(e)}"
|
181 |
+
|
182 |
+
def generate_plot(data, x_col, y_col, title, x_label, y_label):
|
183 |
+
"""Generate a plot from data and return the file path."""
|
184 |
+
plt.figure(figsize=(10, 6))
|
185 |
+
plt.bar(data[x_col], data[y_col])
|
186 |
+
plt.title(title)
|
187 |
+
plt.xlabel(x_label)
|
188 |
+
plt.ylabel(y_label)
|
189 |
+
plt.xticks(rotation=45)
|
190 |
+
plt.tight_layout()
|
191 |
+
|
192 |
+
# Save to a temporary file
|
193 |
+
temp_dir = tempfile.mkdtemp()
|
194 |
+
plot_path = os.path.join(temp_dir, "plot.png")
|
195 |
+
plt.savefig(plot_path)
|
196 |
+
plt.close()
|
197 |
+
|
198 |
+
return plot_path
|
199 |
+
|
200 |
+
async def stream_agent_response(question: str, chat_history: List) -> Tuple[List, Dict]:
|
201 |
+
"""Procesa la pregunta del usuario y devuelve la respuesta del agente."""
|
202 |
+
if not agent:
|
203 |
+
error_msg = (
|
204 |
+
"## ⚠️ Error: Agente no inicializado\n\n"
|
205 |
+
"No se pudo inicializar el agente de base de datos. Por favor, verifica que:\n"
|
206 |
+
"1. Todas las variables de entorno estén configuradas correctamente\n"
|
207 |
+
"2. La base de datos esté accesible\n"
|
208 |
+
f"3. El modelo de lenguaje esté disponible\n\n"
|
209 |
+
f"Error: {agent_error}"
|
210 |
+
)
|
211 |
+
return chat_history + [[question, error_msg]], gr.update(visible=False)
|
212 |
+
|
213 |
+
try:
|
214 |
+
# Agregar un mensaje de "pensando"
|
215 |
+
chat_history = chat_history + [[question, None]]
|
216 |
+
yield chat_history, gr.update(visible=False)
|
217 |
+
|
218 |
+
# Ejecutar el agente
|
219 |
+
response = await agent.ainvoke({"input": question, "chat_history": chat_history[:-1]})
|
220 |
+
|
221 |
+
# Procesar la respuesta
|
222 |
+
if hasattr(response, 'output'):
|
223 |
+
response_text = response.output
|
224 |
+
|
225 |
+
# Verificar si la respuesta contiene una consulta SQL
|
226 |
+
sql_query = extract_sql_query(response_text)
|
227 |
+
if sql_query:
|
228 |
+
# Ejecutar la consulta y actualizar la respuesta
|
229 |
+
db_connection, _ = setup_database_connection()
|
230 |
+
query_result = execute_sql_query(sql_query, db_connection)
|
231 |
+
response_text += f"\n\n### 🔍 Resultado de la consulta:\n```sql\n{sql_query}\n```\n\n{query_result}"
|
232 |
+
else:
|
233 |
+
response_text = "Error: No se recibió respuesta del agente."
|
234 |
+
|
235 |
+
# Actualizar el historial con la respuesta completa
|
236 |
+
chat_history[-1][1] = response_text
|
237 |
+
return chat_history, gr.update(visible=False)
|
238 |
+
|
239 |
+
except Exception as e:
|
240 |
+
error_msg = f"## ❌ Error\n\nOcurrió un error al procesar tu solicitud:\n\n```\n{str(e)}\n```"
|
241 |
+
chat_history[-1][1] = error_msg
|
242 |
+
return chat_history, gr.update(visible=False)
|
243 |
+
|
244 |
+
# Custom CSS for the app
|
245 |
+
custom_css = """
|
246 |
+
.gradio-container {
|
247 |
+
max-width: 1200px !important;
|
248 |
+
margin: 0 auto !important;
|
249 |
+
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen, Ubuntu, Cantarell, sans-serif;
|
250 |
+
}
|
251 |
+
|
252 |
+
#chatbot {
|
253 |
+
min-height: 500px;
|
254 |
+
border: 1px solid #e0e0e0;
|
255 |
+
border-radius: 8px;
|
256 |
+
margin-bottom: 20px;
|
257 |
+
padding: 20px;
|
258 |
+
background-color: #f9f9f9;
|
259 |
+
}
|
260 |
+
|
261 |
+
.user-message, .bot-message {
|
262 |
+
padding: 12px 16px;
|
263 |
+
border-radius: 18px;
|
264 |
+
margin: 8px 0;
|
265 |
+
max-width: 80%;
|
266 |
+
line-height: 1.5;
|
267 |
+
}
|
268 |
+
|
269 |
+
.user-message {
|
270 |
+
background-color: #007bff;
|
271 |
+
color: white;
|
272 |
+
margin-left: auto;
|
273 |
+
border-bottom-right-radius: 4px;
|
274 |
+
}
|
275 |
+
|
276 |
+
.bot-message {
|
277 |
+
background-color: #f1f1f1;
|
278 |
+
color: #333;
|
279 |
+
margin-right: auto;
|
280 |
+
border-bottom-left-radius: 4px;
|
281 |
+
}
|
282 |
+
|
283 |
+
#question-input textarea {
|
284 |
+
min-height: 50px !important;
|
285 |
+
border-radius: 8px !important;
|
286 |
+
padding: 12px !important;
|
287 |
+
font-size: 16px !important;
|
288 |
+
}
|
289 |
+
|
290 |
+
#send-button {
|
291 |
+
height: 100%;
|
292 |
+
background-color: #007bff !important;
|
293 |
+
color: white !important;
|
294 |
+
border: none !important;
|
295 |
+
border-radius: 8px !important;
|
296 |
+
font-weight: 500 !important;
|
297 |
+
transition: background-color 0.2s !important;
|
298 |
+
}
|
299 |
+
|
300 |
+
#send-button:hover {
|
301 |
+
background-color: #0056b3 !important;
|
302 |
+
}
|
303 |
+
|
304 |
+
.status-message {
|
305 |
+
text-align: center;
|
306 |
+
color: #666;
|
307 |
+
font-style: italic;
|
308 |
+
margin: 10px 0;
|
309 |
+
}
|
310 |
+
"""
|
311 |
+
|
312 |
+
def create_ui():
|
313 |
+
"""Crea y devuelve los componentes de la interfaz de usuario de Gradio."""
|
314 |
+
# Verificar el estado del entorno
|
315 |
+
env_ok, env_message = check_environment()
|
316 |
+
|
317 |
+
# Crear el tema personalizado
|
318 |
+
theme = gr.themes.Soft(
|
319 |
+
primary_hue="blue",
|
320 |
+
secondary_hue="indigo",
|
321 |
+
neutral_hue="slate"
|
322 |
+
)
|
323 |
+
|
324 |
+
with gr.Blocks(
|
325 |
+
css=custom_css,
|
326 |
+
title="Asistente de Base de Datos SQL",
|
327 |
+
theme=theme
|
328 |
+
) as demo:
|
329 |
+
# Encabezado
|
330 |
+
gr.Markdown("""
|
331 |
+
# 🤖 Asistente de Base de Datos SQL
|
332 |
+
|
333 |
+
Haz preguntas en lenguaje natural sobre tu base de datos y obtén resultados de consultas SQL.
|
334 |
+
""")
|
335 |
+
|
336 |
+
# Mensaje de estado
|
337 |
+
if not env_ok:
|
338 |
+
gr.Warning("⚠️ " + env_message)
|
339 |
+
|
340 |
+
with gr.Accordion("ℹ️ Estado del sistema", open=not env_ok):
|
341 |
+
if not DEPENDENCIES_AVAILABLE:
|
342 |
+
gr.Markdown("""
|
343 |
+
## ❌ Dependencias faltantes
|
344 |
+
|
345 |
+
Para ejecutar esta aplicación localmente, necesitas instalar las dependencias:
|
346 |
+
|
347 |
+
```bash
|
348 |
+
pip install -r requirements.txt
|
349 |
+
```
|
350 |
+
""")
|
351 |
+
else:
|
352 |
+
if not agent:
|
353 |
+
gr.Markdown(f"""
|
354 |
+
## ⚠️ Configuración incompleta
|
355 |
+
|
356 |
+
No se pudo inicializar el agente de base de datos. Por favor, verifica que:
|
357 |
+
|
358 |
+
1. Todas las variables de entorno estén configuradas correctamente
|
359 |
+
2. La base de datos esté accesible
|
360 |
+
3. La API de Google Gemini esté configurada
|
361 |
+
|
362 |
+
**Error:** {agent_error if agent_error else 'No se pudo determinar el error'}
|
363 |
+
|
364 |
+
### Configuración local
|
365 |
+
|
366 |
+
Crea un archivo `.env` en la raíz del proyecto con las siguientes variables:
|
367 |
+
|
368 |
+
```
|
369 |
+
DB_USER=tu_usuario
|
370 |
+
DB_PASSWORD=tu_contraseña
|
371 |
+
DB_HOST=tu_servidor
|
372 |
+
DB_NAME=tu_base_de_datos
|
373 |
+
GOOGLE_API_KEY=tu_api_key_de_google
|
374 |
+
```
|
375 |
+
""")
|
376 |
+
else:
|
377 |
+
gr.Markdown("""
|
378 |
+
## ✅ Sistema listo
|
379 |
+
|
380 |
+
El asistente está listo para responder tus preguntas sobre la base de datos.
|
381 |
+
""")
|
382 |
+
|
383 |
+
# Interfaz de chat
|
384 |
+
chatbot = gr.Chatbot(
|
385 |
+
elem_id="chatbot",
|
386 |
+
show_label=False,
|
387 |
+
height=500,
|
388 |
+
bubble_full_width=False,
|
389 |
+
avatar_images=(
|
390 |
+
"https://i.imgur.com/8O1mCJx.png", # User avatar
|
391 |
+
"https://i.imgur.com/7I12Ybh.png" # Bot avatar
|
392 |
+
),
|
393 |
+
render_markdown=True,
|
394 |
+
show_copy_button=True,
|
395 |
+
show_share_button=True,
|
396 |
+
likeable=True
|
397 |
+
)
|
398 |
+
|
399 |
+
# Área de entrada
|
400 |
+
with gr.Row():
|
401 |
+
question_input = gr.Textbox(
|
402 |
+
label="",
|
403 |
+
placeholder="Escribe tu pregunta sobre la base de datos...",
|
404 |
+
elem_id="question-input",
|
405 |
+
container=False,
|
406 |
+
scale=5,
|
407 |
+
min_width=300,
|
408 |
+
max_lines=3,
|
409 |
+
autofocus=True
|
410 |
+
)
|
411 |
+
submit_button = gr.Button(
|
412 |
+
"Enviar",
|
413 |
+
elem_id="send-button",
|
414 |
+
min_width=100,
|
415 |
+
scale=1,
|
416 |
+
variant="primary"
|
417 |
+
)
|
418 |
+
|
419 |
+
# Información del sistema (solo para depuración)
|
420 |
+
with gr.Accordion("🔍 Información de depuración", open=False):
|
421 |
+
gr.Markdown("""
|
422 |
+
### Estado del sistema
|
423 |
+
- **Base de datos**: {}
|
424 |
+
- **Modelo**: {}
|
425 |
+
- **Modo**: {}
|
426 |
+
""".format(
|
427 |
+
f"Conectado a {os.getenv('DB_HOST')}/{os.getenv('DB_NAME')}" if db_connected else "No conectado",
|
428 |
+
"gemini-2.0-flash" if agent else "No disponible",
|
429 |
+
"Completo" if agent else "Demo (sin conexión a base de datos)"
|
430 |
+
))
|
431 |
+
|
432 |
+
# Mostrar variables de entorno (solo para depuración)
|
433 |
+
if os.getenv("SHOW_ENV_DEBUG", "false").lower() == "true":
|
434 |
+
env_vars = {k: "***" if "PASS" in k or "KEY" in k else v
|
435 |
+
for k, v in os.environ.items()
|
436 |
+
if k.startswith(('DB_', 'GOOGLE_'))}
|
437 |
+
gr.Code(
|
438 |
+
json.dumps(env_vars, indent=2, ensure_ascii=False),
|
439 |
+
language="json",
|
440 |
+
label="Variables de entorno"
|
441 |
+
)
|
442 |
+
|
443 |
+
# Hidden component for streaming output
|
444 |
+
streaming_output_display = gr.Textbox(visible=False)
|
445 |
+
|
446 |
+
return demo, chatbot, question_input, submit_button, streaming_output_display
|
447 |
+
|
448 |
+
# Create the UI components
|
449 |
+
demo, chatbot, question_input, submit_button, streaming_output_display = create_ui()
|
450 |
+
|
451 |
+
def user_message(user_input: str, chat_history: List) -> Tuple[str, List]:
|
452 |
+
"""Add user message to chat history and clear input."""
|
453 |
+
if not user_input.strip():
|
454 |
+
return "", chat_history
|
455 |
+
logger.info(f"User message: {user_input}")
|
456 |
+
return "", chat_history + [[user_input, None]]
|
457 |
+
|
458 |
+
def bot_response(chat_history: List) -> Tuple[List, Dict]:
|
459 |
+
"""Get bot response and update chat history."""
|
460 |
+
if not chat_history or not chat_history[-1][0]:
|
461 |
+
return chat_history, gr.update(visible=False)
|
462 |
+
|
463 |
+
question = chat_history[-1][0]
|
464 |
+
logger.info(f"Processing question: {question}")
|
465 |
+
return stream_agent_response(question, chat_history[:-1])
|
466 |
+
|
467 |
+
# Event handlers
|
468 |
+
submit_click = submit_button.click(
|
469 |
+
fn=user_message,
|
470 |
+
inputs=[question_input, chatbot],
|
471 |
+
outputs=[question_input, chatbot],
|
472 |
+
queue=True
|
473 |
+
).then(
|
474 |
+
fn=bot_response,
|
475 |
+
inputs=[chatbot],
|
476 |
+
outputs=[chatbot, streaming_output_display],
|
477 |
+
api_name="ask"
|
478 |
+
)
|
479 |
+
|
480 |
+
question_input.submit(
|
481 |
+
fn=user_message,
|
482 |
+
inputs=[question_input, chatbot],
|
483 |
+
outputs=[question_input, chatbot],
|
484 |
+
queue=True
|
485 |
+
).then(
|
486 |
+
fn=bot_response,
|
487 |
+
inputs=[chatbot],
|
488 |
+
outputs=[chatbot, streaming_output_display]
|
489 |
+
)
|
490 |
+
|
491 |
+
# Configuración para Hugging Face Spaces
|
492 |
+
def get_app():
|
493 |
+
"""Obtiene la instancia de la aplicación Gradio para Hugging Face Spaces."""
|
494 |
+
# Verificar si estamos en un entorno de Hugging Face Spaces
|
495 |
+
if os.getenv('SPACE_ID'):
|
496 |
+
# Configuración específica para Spaces
|
497 |
+
demo.title = "🤖 Asistente de Base de Datos SQL (Demo)"
|
498 |
+
demo.description = """
|
499 |
+
Este es un demo del asistente de base de datos SQL.
|
500 |
+
Para usar la versión completa con conexión a base de datos, clona este espacio y configura las variables de entorno.
|
501 |
+
"""
|
502 |
+
|
503 |
+
return demo
|
504 |
+
|
505 |
+
# Para desarrollo local
|
506 |
+
if __name__ == "__main__":
|
507 |
+
# Configuración para desarrollo local
|
508 |
+
demo.queue(concurrency_count=5).launch(
|
509 |
+
server_name="0.0.0.0",
|
510 |
+
server_port=7860,
|
511 |
+
debug=True,
|
512 |
+
share=False,
|
513 |
+
show_api=True,
|
514 |
+
favicon_path=None,
|
515 |
+
show_error=True,
|
516 |
+
show_tips=True
|
517 |
+
)
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio>=3.0.0
|
2 |
+
langchain>=0.1.0
|
3 |
+
langchain-community>=0.0.10
|
4 |
+
langchain-google-genai>=0.1.0
|
5 |
+
langgraph>=0.0.0
|
6 |
+
matplotlib>=3.7.0
|
7 |
+
pandas>=2.0.0
|
8 |
+
sqlalchemy>=2.0.0
|
9 |
+
python-dotenv>=1.0.0
|