Spaces:
Runtime error
Runtime error
| from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline | |
| from transformers.utils import is_flash_attn_2_available | |
| import torch | |
| import gradio as gr | |
| import matplotlib.pyplot as plt | |
| import time | |
| import os | |
| BATCH_SIZE = 16 | |
| TOKEN = os.environ.get("HF_TOKEN", None) | |
| device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
| torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
| use_flash_attention_2 = is_flash_attn_2_available() | |
| model = AutoModelForSpeechSeq2Seq.from_pretrained( | |
| "openai/whisper-large-v2", torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True, use_flash_attention_2=use_flash_attention_2 | |
| ) | |
| distilled_model = AutoModelForSpeechSeq2Seq.from_pretrained( | |
| "sanchit-gandhi/distil-large-v2-private", torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True, use_flash_attention_2=use_flash_attention_2, token=TOKEN | |
| ) | |
| if not use_flash_attention_2: | |
| model = model.bettertransformer() | |
| distilled_model = distilled_model.bettertransformer() | |
| processor = AutoProcessor.from_pretrained("openai/whisper-tiny.en") | |
| model.to(device) | |
| distilled_model.to(device) | |
| pipe = pipeline( | |
| "automatic-speech-recognition", | |
| model=model, | |
| tokenizer=processor.tokenizer, | |
| feature_extractor=processor.feature_extractor, | |
| max_new_tokens=128, | |
| chunk_length_s=30, | |
| torch_dtype=torch_dtype, | |
| device=device, | |
| language="en", | |
| task="transcribe", | |
| ) | |
| pipe_forward = pipe._forward | |
| distil_pipe = pipeline( | |
| "automatic-speech-recognition", | |
| model=distilled_model, | |
| tokenizer=processor.tokenizer, | |
| feature_extractor=processor.feature_extractor, | |
| max_new_tokens=128, | |
| chunk_length_s=15, | |
| torch_dtype=torch_dtype, | |
| device=device, | |
| language="en", | |
| task="transcribe", | |
| ) | |
| distil_pipe_forward = distil_pipe._forward | |
| def transcribe(inputs): | |
| if inputs is None: | |
| raise gr.Error("No audio file submitted! Please record or upload an audio file before submitting your request.") | |
| def _forward_distil_time(*args, **kwargs): | |
| global distil_runtime | |
| start_time = time.time() | |
| result = distil_pipe_forward(*args, **kwargs) | |
| distil_runtime = time.time() - start_time | |
| return result | |
| distil_pipe._forward = _forward_distil_time | |
| distil_text = distil_pipe(inputs, batch_size=BATCH_SIZE)["text"] | |
| yield distil_text, distil_runtime, None, None, None | |
| def _forward_time(*args, **kwargs): | |
| global runtime | |
| start_time = time.time() | |
| result = pipe_forward(*args, **kwargs) | |
| runtime = time.time() - start_time | |
| return result | |
| pipe._forward = _forward_time | |
| text = pipe(inputs, batch_size=BATCH_SIZE)["text"] | |
| relative_latency = runtime / distil_runtime | |
| # Create figure and axis | |
| fig, ax = plt.subplots(figsize=(5, 5)) | |
| # Define bar width and positions | |
| bar_width = 0.1 | |
| positions = [0, 0.1] # Adjusted positions to bring bars closer | |
| # Plot data | |
| ax.bar(positions[0], distil_runtime, bar_width, edgecolor='black') | |
| ax.bar(positions[1], runtime, bar_width, edgecolor='black') | |
| # Set title, labels, and xticks | |
| ax.set_ylabel('Transcription time (s)') | |
| ax.set_xticks(positions) | |
| ax.set_xticklabels(['Distil-Whisper', 'Whisper']) | |
| # Gridlines and other styling | |
| ax.grid(which='major', axis='y', linestyle='--', linewidth=0.5) | |
| # Use tight layout to avoid overlaps | |
| plt.tight_layout() | |
| yield distil_text, distil_runtime, text, runtime, plt | |
| if __name__ == "__main__": | |
| with gr.Blocks() as demo: | |
| gr.HTML( | |
| """ | |
| <div style="text-align: center; max-width: 700px; margin: 0 auto;"> | |
| <div | |
| style=" | |
| display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem; | |
| " | |
| > | |
| <h1 style="font-weight: 900; margin-bottom: 7px; line-height: normal;"> | |
| Distil-Whisper VS Whisper | |
| </h1> | |
| </div> | |
| </div> | |
| """ | |
| ) | |
| gr.HTML( | |
| f""" | |
| This demo evaluates the <a href="https://huggingface.co/distil-whisper/distil-large-v2"> Distil-Whisper </a> model | |
| against the <a href="https://huggingface.co/openai/whisper-large-v2"> Whisper </a> model. | |
| """ | |
| ) | |
| audio = gr.components.Audio(source="upload", type="filepath", label="Audio file") | |
| button = gr.Button("Transcribe") | |
| plot = gr.components.Plot() | |
| with gr.Row(): | |
| distil_runtime = gr.components.Textbox(label="Distil-Whisper Transcription Time (s)") | |
| runtime = gr.components.Textbox(label="Whisper Transcription Time (s)") | |
| with gr.Row(): | |
| distil_transcription = gr.components.Textbox(label="Distil-Whisper Transcription").style(show_copy_button=True) | |
| transcription = gr.components.Textbox(label="Whisper Transcription").style(show_copy_button=True) | |
| button.click( | |
| fn=transcribe, | |
| inputs=audio, | |
| outputs=[distil_transcription, distil_runtime, transcription, runtime, plot], | |
| ) | |
| demo.queue().launch() |