devingulliver commited on
Commit
9aff15d
·
verified ·
1 Parent(s): ad0af08

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -31,7 +31,7 @@ def get_pattern(shape, w_seed=999999):
31
  g = torch.Generator(device=pipe.device)
32
  g.manual_seed(w_seed)
33
  gt_init = pipe.prepare_latents(1, pipe.unet.in_channels,
34
- 1024, 1024,
35
  pipe.unet.dtype, pipe.device, g)
36
  gt_patch = torch.fft.fftshift(torch.fft.fft2(gt_init), dim=(-1, -2))
37
  # ring pattern. paper found this to be effective
@@ -45,7 +45,7 @@ def get_pattern(shape, w_seed=999999):
45
  return gt_patch
46
 
47
  def transform_img(image):
48
- tform = tforms.Compose([tforms.Resize(1024),tforms.CenterCrop(1024),tforms.ToTensor()])
49
  image = tform(image)
50
  return 2.0 * image - 1.0
51
 
@@ -68,7 +68,7 @@ def get_noise():
68
 
69
  # inject watermark
70
  init_latents = pipe.prepare_latents(1, pipe.unet.in_channels,
71
- 1024, 1024,
72
  pipe.unet.dtype, pipe.device, None)
73
  init_latents_fft = torch.fft.fftshift(torch.fft.fft2(init_latents), dim=(-1, -2))
74
  init_latents_fft[w_mask] = w_key[w_mask].clone()
@@ -86,7 +86,7 @@ def detect(image):
86
 
87
  # ddim inversion
88
  img = transform_img(image).unsqueeze(0).to(pipe.unet.dtype).to(pipe.device)
89
- image_latents = pipe.vae.encode(img).latent_dist.mode() * 0.13025
90
  inverted_latents = pipe(prompt="", latents=image_latents, guidance_scale=1, num_inference_steps=50, output_type="latent")
91
  inverted_latents = inverted_latents.images
92
 
 
31
  g = torch.Generator(device=pipe.device)
32
  g.manual_seed(w_seed)
33
  gt_init = pipe.prepare_latents(1, pipe.unet.in_channels,
34
+ 512, 512,
35
  pipe.unet.dtype, pipe.device, g)
36
  gt_patch = torch.fft.fftshift(torch.fft.fft2(gt_init), dim=(-1, -2))
37
  # ring pattern. paper found this to be effective
 
45
  return gt_patch
46
 
47
  def transform_img(image):
48
+ tform = tforms.Compose([tforms.Resize(512),tforms.CenterCrop(512),tforms.ToTensor()])
49
  image = tform(image)
50
  return 2.0 * image - 1.0
51
 
 
68
 
69
  # inject watermark
70
  init_latents = pipe.prepare_latents(1, pipe.unet.in_channels,
71
+ 512, 512,
72
  pipe.unet.dtype, pipe.device, None)
73
  init_latents_fft = torch.fft.fftshift(torch.fft.fft2(init_latents), dim=(-1, -2))
74
  init_latents_fft[w_mask] = w_key[w_mask].clone()
 
86
 
87
  # ddim inversion
88
  img = transform_img(image).unsqueeze(0).to(pipe.unet.dtype).to(pipe.device)
89
+ image_latents = pipe.vae.encode(img).latent_dist.mode() * 0.18215
90
  inverted_latents = pipe(prompt="", latents=image_latents, guidance_scale=1, num_inference_steps=50, output_type="latent")
91
  inverted_latents = inverted_latents.images
92