Spaces:
Runtime error
Runtime error
| import os | |
| import pandas as pd | |
| import requests | |
| import huggingface_hub | |
| import gradio as gr | |
| data = pd.read_csv("data.csv", dtype="str") | |
| webhook_url = os.environ.get("WEBHOOK_URL") | |
| archlinks = { | |
| "H3": "https://arxiv.org/abs/2212.14052", | |
| "Mamba": "https://arxiv.org/abs/2312.00752", | |
| "Jamba": "https://arxiv.org/abs/2403.19887", | |
| "Based": "https://arxiv.org/abs/2402.18668", | |
| "RWKV-4": "https://arxiv.org/abs/2305.13048", | |
| "RWKV-5": "https://substack.recursal.ai/p/rwkv-v5-15b-achieves-sota-multi-lingual", # paper soon! | |
| "RWKV-6": "https://twitter.com/BlinkDL_AI/status/1765567749533934071", # paper soon! | |
| "StripedHyena": "https://www.together.ai/blog/stripedhyena-7b", # no paper? | |
| } | |
| def filter_table(cols, name, type, arch, size): | |
| tmp = data | |
| # filter | |
| tmp = tmp[tmp["Name"].str.contains(name, case=False)] | |
| tmp = tmp[tmp["Type"].isin(type)] | |
| tmp = tmp[tmp["Architecture"].isin(arch)] | |
| tmp = tmp[tmp["Model Size"].isin(size)] | |
| # prettify | |
| tmp["Type"] = tmp["Type"].apply(lambda x: x[0]) | |
| tmp = tmp.rename({"Type": "T"}, axis=1) | |
| tmp["Name"] = tmp["Name"].apply(lambda x: f'<a target="_blank" href="https://huggingface.co/{x}" style="color:var(--link-text-color);text-decoration:underline;text-decoration-style:dotted">{x}</a>') | |
| tmp["Architecture"] = tmp["Architecture"].apply(lambda x: f'<a target="_blank" href="{archlinks[x]}" style="color:var(--link-text-color);text-decoration:underline;text-decoration-style:dotted">{x}</a>') | |
| tmp["Base Model"] = tmp["Base Model"].apply(lambda x: f'<a target="_blank" href="https://huggingface.co/{x}" style="color:var(--link-text-color);text-decoration:underline;text-decoration-style:dotted">{x}</a>' if x != "base" else "") | |
| # show/hide | |
| tmp = tmp.drop(cols, axis=1) | |
| # done! | |
| return tmp | |
| def submit_model(name): | |
| try: | |
| huggingface_hub.hf_hub_download(repo_id=name, filename="config.json") # sanity check input | |
| except huggingface_hub.utils._errors.EntryNotFoundError: | |
| return "# ERROR: Model does not have a config.json file!" | |
| except huggingface_hub.utils._errors.RepositoryNotFoundError: | |
| return "# ERROR: Model could not be found on the Hugging Face Hub!" | |
| except requests.exceptions.HTTPError: | |
| return "# ERROR: Network error while validating model. Please try again later." | |
| except Exception as e: | |
| print(e) | |
| return "ERROR: Unexpected error. Please try again later." | |
| try: | |
| result = requests.post(webhook_url, json={"content":name}) | |
| except requests.exceptions.HTTPError: | |
| return "# ERROR: Network error while contacting queue. Please try again in a few minutes." | |
| except Exception as e: | |
| print(e) | |
| return "ERROR: Unexpected error. Please try again later." | |
| return "# SUCCESS: Please wait up to 24 hours for your model to be added to the queue." | |
| with gr.Blocks(css=".gradio-container{max-width:95%!important} .tab-buttons button{font-size:1.3em}") as demo: | |
| gr.HTML('<h1 style="text-align:center"><span style="font-size:1.3em">Subquadratic LLM Leaderboard</span></h1>') | |
| gr.Markdown("**REMEMBER:** If you don't see an eligible model here, make sure to submit it! We hope to incentivize subquadratic/attention-free LLM development through friendly competition.") | |
| with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
| with gr.Tab("🏅 LLM Benchmark"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| namefilter = gr.Textbox(max_lines=1, placeholder="Search by model name and hit Enter...", show_label=False) | |
| typefilter = gr.CheckboxGroup(show_label=False, choices=list(data["Type"].unique()), value=[n for n in data["Type"].unique() if n not in ["⏳ Pending"]]) | |
| with gr.Column(): | |
| archfilter = gr.CheckboxGroup(label="Filter by model architecture", choices=[n for n in list(data["Architecture"].unique()) if n != "Transformer"], value=[n for n in list(data["Architecture"].unique()) if n != "Transformer"]) | |
| sizefilter = gr.CheckboxGroup(label="Filter by model size", choices=list(data["Model Size"].unique()), value=list(data["Model Size"].unique())) | |
| with gr.Column(): | |
| colfilter = gr.CheckboxGroup(label="Hide columns", choices=list(data.columns)[2:], value=["Architecture","Model Size","Base Model"]) | |
| table = gr.Dataframe(filter_table(["Architecture","Model Size","Base Model"],"",[n for n in data["Type"].unique() if n not in ["⏳ Pending"]],[n for n in list(data["Architecture"].unique()) if n != "Transformer"],list(data["Model Size"].unique())), datatype="markdown") | |
| # actions | |
| namefilter.submit(filter_table, [colfilter,namefilter,typefilter,archfilter,sizefilter], table) | |
| for filter in [colfilter,typefilter,archfilter,sizefilter]: | |
| filter.input(filter_table, [colfilter,namefilter,typefilter,archfilter,sizefilter], table) | |
| with gr.Tab("⚖️ Comparison"): | |
| gr.Markdown("This table is whitelisted to one model per architecture, specifically 1.5B models trained on The Pile for 1 epoch, for a direct comparison of architectures.") | |
| gr.Dataframe(data[data["Name"].isin(["EleutherAI/pythia-1.4b","RWKV/rwkv-4-1b5-pile","state-spaces/mamba-1.4b","danfu09/H3-1.3B"])].drop(["Type","Model Size","Base Model"], axis=1), datatype="markdown") | |
| with gr.Tab("📝 About"): | |
| gr.Markdown(""" | |
| The **Subquadratic LLM Leaderboard** evaluates LLMs with subquadratic/attention-free architectures (i.e. RWKV & Mamba) with the goal of providing open | |
| evaluation results while the architectures themselves are pending inclusion/release in the 🤗 Transformers library. | |
| The metrics are the same as the Open LLM Leaderboard: ARC 25-shot, HellaSwag 10-shot, MMLU 5-shot, TruthfulQA zeroshot, Winogrande 5-shot, and GSM8K 5-shot. | |
| This leaderboard is maintained by Devin Gulliver and is perpetually under construction, check back regularly for further improvements! | |
| Compute for evaluating RWKV models is generously provided by [Recursal AI](https://recursal.ai). | |
| """) | |
| with gr.Tab("🚀 Submit here!"): | |
| with gr.Group(): | |
| with gr.Row(): | |
| model_name = gr.Textbox(max_lines=1, placeholder="Enter model name...", show_label=False, scale=4) | |
| submit = gr.Button("Submit", variant="primary", scale=0) | |
| output = gr.Markdown("Enter a public HF repo id, then hit Submit to add it to the evaluation queue.") | |
| submit.click(fn=submit_model, inputs=model_name, outputs=output) | |
| demo.launch(show_api=False, allowed_paths=["data.csv"]) |