Spaces:
Runtime error
Runtime error
"""Modified from https://github.com/mlfoundations/open_flamingo""" | |
import open_clip | |
import torch | |
import torch.nn as nn | |
from bigmodelvis import Visualization | |
from peft import LoraConfig, get_peft_model | |
from transformers import LlamaForCausalLM, LlamaTokenizer | |
from .flamingo import Flamingo | |
from .flamingo_lm import FlamingoLMMixin | |
from .utils import extend_instance | |
def create_model_and_transforms( | |
clip_vision_encoder_path: str, | |
clip_vision_encoder_pretrained: str, | |
lang_encoder_path: str, | |
tokenizer_path: str, | |
decoder_layers_attr_name: str = None, | |
pretrained_model_path: str = None, | |
tuning_config=None, | |
**flamingo_kwargs, | |
): | |
""" | |
Initialize a Flamingo model from a pretrained vision encoder and language encoder. | |
Appends special tokens to the tokenizer and freezes backbones. | |
Args: | |
clip_vision_encoder_path (str): path to pretrained clip model (e.g. "ViT-B-32") | |
clip_vision_encoder_pretrained (str): name of pretraining dataset for clip model (e.g. "laion2b_s32b_b79k") | |
lang_encoder_path (str): path to pretrained language encoder | |
tokenizer_path (str): path to pretrained tokenizer | |
decoder_layers_attr_name (str, optional): name of the decoder layers attribute. Defaults to None. | |
Returns: | |
Flamingo: Flamingo model from pretrained vision and language encoders | |
Image processor: Pipeline to preprocess input images | |
Tokenizer: A tokenizer for the language model | |
""" | |
print("init clip vision encoder") | |
vision_encoder, _, image_processor = open_clip.create_model_and_transforms( | |
clip_vision_encoder_path, pretrained=clip_vision_encoder_pretrained | |
) | |
# set the vision encoder to output the visual features | |
vision_encoder.visual.output_tokens = True | |
print("init tokenizer") | |
text_tokenizer = LlamaTokenizer.from_pretrained(tokenizer_path) | |
# add Flamingo special tokens to the tokenizer | |
text_tokenizer.add_special_tokens({"additional_special_tokens": ["<|endofchunk|>", "<image>"]}) | |
if text_tokenizer.pad_token is None: | |
# Issue: GPT models don't have a pad token, which we use to | |
# modify labels for the loss. | |
text_tokenizer.add_special_tokens({"pad_token": "<PAD>"}) | |
text_tokenizer.bos_token_id = 1 | |
text_tokenizer.eos_token_id = 2 | |
print("init llama") | |
lang_encoder = LlamaForCausalLM.from_pretrained(lang_encoder_path) | |
extend_instance(lang_encoder, FlamingoLMMixin) | |
if decoder_layers_attr_name is None: | |
decoder_layers_attr_name = _infer_decoder_layers_attr_name(lang_encoder) | |
lang_encoder.set_decoder_layers_attr_name(decoder_layers_attr_name) | |
lang_encoder.resize_token_embeddings(len(text_tokenizer)) | |
model = Flamingo( | |
vision_encoder, | |
lang_encoder, | |
text_tokenizer.encode("<|endofchunk|>")[-1], | |
text_tokenizer.encode("<image>")[-1], | |
vis_dim=open_clip.get_model_config(clip_vision_encoder_path)["vision_cfg"]["width"], | |
cross_attn_every_n_layers=4, | |
**flamingo_kwargs, | |
) | |
if pretrained_model_path is not None: | |
print(f"loading pretrained model from {pretrained_model_path}") | |
model.load_state_dict(torch.load(pretrained_model_path), strict=False) | |
# Freeze all parameters | |
model.requires_grad_(False) | |
assert sum(p.numel() for p in model.parameters() if p.requires_grad) == 0 | |
if tuning_config is not None: | |
model = prepare_model_for_tuning(model, tuning_config) | |
else: | |
raise ValueError("tuning_config must be provided") | |
print( | |
f"Flamingo model initialized with {sum(p.numel() for p in model.parameters() if p.requires_grad)} trainable parameters" | |
) | |
return model, image_processor, text_tokenizer | |
def _infer_decoder_layers_attr_name(model): | |
for k in __KNOWN_DECODER_LAYERS_ATTR_NAMES: | |
if k.lower() in model.__class__.__name__.lower(): | |
return __KNOWN_DECODER_LAYERS_ATTR_NAMES[k] | |
raise ValueError( | |
f"We require the attribute name for the nn.ModuleList in the decoder storing the transformer block layers. Please supply this string manually." | |
) | |
__KNOWN_DECODER_LAYERS_ATTR_NAMES = { | |
"opt": "model.decoder.layers", | |
"gptneo": "transformer.h", | |
"gptj": "transformer.h", | |
"gpt-j": "transformer.h", | |
"pythia": "gpt_neox.layers", | |
"llama": "model.layers", | |
} | |
def prepare_model_for_tuning(model: nn.Module, config): | |
if config.lora: | |
lora_config = LoraConfig( | |
r=config.lora_r, | |
lora_alpha=config.lora_alpha, | |
target_modules=config.lora_target_modules, | |
lora_dropout=config.lora_dropout, | |
bias="none", # won't use bias currently | |
modules_to_save=[], # TODO: might be helpful if save partial model | |
task_type="CAUSAL_LM", | |
) | |
model.lang_encoder = get_peft_model(model.lang_encoder, peft_config=lora_config) | |
# manually unfreeze modules, we use a `substring` fashion mathcing | |
for name, param in model.named_parameters(): | |
if any(substr in name for substr in config.unfrozen): | |
param.requires_grad = True | |
if config.vis and is_rank0(): | |
Visualization(model).structure_graph() | |
return model | |
# temporary workaround, should use a common utils in the future | |
def is_rank0(): | |
if not torch.distributed.is_initialized(): | |
return True | |
return torch.distributed.get_rank() == 0 | |