devudilip's picture
update
c4e3b39
raw
history blame
1.17 kB
import gradio as gr
from fastai.vision.all import *
import sys
import subprocess
# Install fasttransform for model compatibility
try:
import fasttransform # This makes the Pipeline class available for unpickling
except ImportError:
subprocess.check_call([sys.executable, "-m", "pip", "install", "fasttransform"])
learn = load_learner('model.pkl')
labels = learn.dls.vocab
def predict(img):
img = PILImage.create(img)
pred, pred_idx, probs = learn.predict(img)
return {labels[i]: float(probs[i]) for i in range(len(labels))}
title = "Pet Breed Classifier"
description = "A pet breed classifier trained on the Oxford Pets dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces."
article = "<p style='text-align: center'><a href='https://tmabraham.github.io/blog/gradio_hf_spaces_tutorial' target='_blank'>Blog post</a></p>"
examples = ['siamese.png']
gr.Interface(
fn=predict,
inputs=gr.Image(shape=(512, 512)), # Updated to newer Gradio syntax
outputs=gr.Label(num_top_classes=3), # Updated to newer Gradio syntax
title=title,
description=description,
article=article,
examples=examples
).launch()