# AUTOGENERATED! DO NOT EDIT! File to edit: test.ipynb. # %% auto 0 __all__ = ['learn', 'categories', 'image', 'label', 'examples', 'inf', 'classify_img'] # %% test.ipynb 2 from fastai.vision.all import * import gradio as gr # %% test.ipynb 4 learn = load_learner('model.pkl') # %% test.ipynb 5 categories = ('Art Deco', 'Baroque', 'Classical', 'Craftsman', 'Gothic', 'Renaissance', 'Tudor', 'Victorian') def classify_img(img): pred,idx,probs = learn.predict(img) # Convert each tensor probability to a float properly return dict(zip(categories, map(float, probs))) # %% test.ipynb 8 # Define Gradio interface image = gr.Image(image_mode="RGB", type="pil") label = gr.Label() examples = ['classical.jpg', 'artdec.jpg', 'victorian.jpeg'] inf = gr.Interface(fn=classify_img, inputs=image, outputs=label, examples=examples) # Launch the app inf.launch(inline=False)