File size: 2,176 Bytes
515c353
4179bd1
515c353
 
4179bd1
 
 
 
515c353
 
 
4179bd1
 
515c353
 
 
 
 
 
 
4179bd1
 
 
 
515c353
4179bd1
 
515c353
 
 
 
 
 
4179bd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
515c353
 
4179bd1
515c353
4179bd1
515c353
4179bd1
515c353
 
4179bd1
515c353
4179bd1
 
 
515c353
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import gradio as gr
from transformers import pipeline
from huggingface_hub import InferenceClient

# ๊ฐ์ • ๋ถ„์„ ๋ชจ๋ธ ๋กœ๋“œ
sentiment_pipeline = pipeline("sentiment-analysis", model="beomi/KcELECTRA-base")

# ์ƒ์„ฑ ๋ชจ๋ธ (Zephyr)
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")


# ๊ฐ์ • ๋ถ„์„ + ์žฌ์ž‘์„ฑ ํ•จ์ˆ˜
def rewrite_if_negative(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    #๊ฐ์ • ๋ถ„์„
    result = sentiment_pipeline(message)[0]
    label = result['label']
    score = result['score']

    #๋ฉ”์‹œ์ง€ ์ดˆ๊ธฐํ™”
    messages = [{"role": "system", "content": system_message}]
    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    #๋ฌธ์žฅ ์žฌ์ž‘์„ฑ ์—ฌ๋ถ€ ํŒ๋‹จ
    if label == "LABEL_1" and score > 0.8:
        messages.append({"role": "user", "content": f"๋‹ค์Œ ๋ฌธ์žฅ์„ ๊ณต๊ฐ ๊ฐ€๋Š” ๋ง๋กœ ๋ฐ”๊ฟ”์ค˜: {message}"})
        response = ""
        for chunk in client.chat_completion(
            messages,
            max_tokens=max_tokens,
            stream=True,
            temperature=temperature,
            top_p=top_p,
        ):
            token = chunk.choices[0].delta.content
            response += token
            yield response
    else:
        yield "ํ‘œํ˜„์ด ๊ดœ์ฐฎ."


# Gradio ์ธํ„ฐํŽ˜์ด์Šค ๊ตฌ์„ฑ
demo = gr.ChatInterface(
    fn=rewrite_if_negative,
    additional_inputs=[
        gr.Textbox(value="๋„ˆ๋Š” ๋ถ€๋“œ๋Ÿฌ์šด ๋งํˆฌ๋กœ ๋งํ•˜๋Š” AI์•ผ.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
    ],
    title="๋ฌธ์žฅ ์–ด์‹œ์Šคํ„ด์Šค",
    description="๋ฌธ์žฅ์„ ์ž…๋ ฅํ•˜๋ฉด ๊ฐ์ •์„ ๋ถ„์„ํ•˜๊ณ , ๋„ˆ๋ฌด ๋ถ€์ •์ ์ธ ๋งํˆฌ๋Š” ๊ณต๊ฐ ๊ฐ€๋Š” ํ‘œํ˜„์œผ๋กœ ๋ฐ”๊ฟ”์คŒ",
    theme="soft",
)

if __name__ == "__main__":
    demo.launch()