Deva
commited on
Commit
·
d01f802
1
Parent(s):
2ceb61b
Feature Get exif readable and modifiable and extract
Browse files- .gitignore +2 -1
- app.py +143 -28
.gitignore
CHANGED
@@ -1,2 +1,3 @@
|
|
1 |
-
|
|
|
2 |
*.csv
|
|
|
1 |
+
data/*
|
2 |
+
notebooks/*
|
3 |
*.csv
|
app.py
CHANGED
@@ -1,28 +1,119 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import os
|
5 |
-
from
|
|
|
|
|
|
|
6 |
import gradio as gr
|
|
|
|
|
|
|
7 |
from pathlib import Path
|
8 |
-
from
|
|
|
9 |
|
10 |
-
#
|
11 |
-
|
|
|
12 |
|
13 |
|
|
|
|
|
14 |
# Load model
|
15 |
# processor = AutoImageProcessor.from_pretrained("victor/animals-classifier")
|
16 |
# model = AutoModelForImageClassification.from_pretrained("victor/animals-classifier")
|
17 |
# model.eval()
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
def get_file_names(files_):
|
21 |
"""
|
22 |
Get a list of the name of files splitted to get only the proper name
|
23 |
Input: Uploaded files
|
24 |
Output: ['name of file 1', 'name of file 2']"""
|
25 |
-
return [file.name
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
|
28 |
def get_annotation(files_):
|
@@ -31,11 +122,14 @@ def get_annotation(files_):
|
|
31 |
Input: Uploaded files
|
32 |
Output: Df that contains: file_name | label | accuracy
|
33 |
"""
|
34 |
-
df = pd.DataFrame(columns=["file_name", "label", "accuracy"])
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
39 |
|
40 |
|
41 |
def df_to_csv(df_):
|
@@ -48,6 +142,11 @@ def df_to_csv(df_):
|
|
48 |
return gr.File(value="output.csv", visible=True)
|
49 |
|
50 |
|
|
|
|
|
|
|
|
|
|
|
51 |
def process_files(files_):
|
52 |
"""
|
53 |
Main function
|
@@ -57,29 +156,45 @@ def process_files(files_):
|
|
57 |
- Get the csv output
|
58 |
"""
|
59 |
df = get_annotation(files_)
|
60 |
-
|
61 |
-
print(df)
|
62 |
-
print(output_csv)
|
63 |
-
print("test")
|
64 |
-
return [df, output_csv]
|
65 |
-
|
66 |
-
|
67 |
-
title = "Demo: zero-shot depth estimation with DPT + 3D Point Cloud"
|
68 |
-
description = "This demo is a variation from the original <a href='https://huggingface.co/spaces/nielsr/dpt-depth-estimation' target='_blank'>DPT Demo</a>. It uses the DPT model to predict the depth of an image and then uses 3D Point Cloud to create a 3D object."
|
69 |
|
70 |
|
71 |
with gr.Blocks() as interface:
|
|
|
|
|
72 |
with gr.Row():
|
73 |
upload_btn = gr.UploadButton(
|
74 |
-
"
|
75 |
file_types=["image", "video"],
|
76 |
file_count="multiple",
|
77 |
)
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
)
|
|
|
|
|
|
|
|
|
83 |
|
84 |
|
85 |
-
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
TOC:
|
3 |
+
0) IMPORTS
|
4 |
+
1) METADATA
|
5 |
+
2) UPLOAD
|
6 |
+
3) ANNOTATIONS
|
7 |
+
-1) MAIN
|
8 |
+
"""
|
9 |
+
|
10 |
+
# gradio run.py --demo-name=my_demo
|
11 |
+
|
12 |
+
##################################################
|
13 |
+
# 0) IMPORTS
|
14 |
+
##################################################
|
15 |
+
|
16 |
+
# baselayer
|
17 |
import os
|
18 |
+
from io import BytesIO
|
19 |
+
import argparse
|
20 |
+
|
21 |
+
# web
|
22 |
import gradio as gr
|
23 |
+
|
24 |
+
# image processing
|
25 |
+
from tkinter import Tk, filedialog
|
26 |
from pathlib import Path
|
27 |
+
from PIL import Image, ExifTags
|
28 |
+
from PIL.ExifTags import TAGS
|
29 |
|
30 |
+
# data science
|
31 |
+
import numpy as np
|
32 |
+
import pandas as pd
|
33 |
|
34 |
|
35 |
+
# from transformers import AutoImageProcessor, AutoModelForImageClassification
|
36 |
+
# import torch
|
37 |
# Load model
|
38 |
# processor = AutoImageProcessor.from_pretrained("victor/animals-classifier")
|
39 |
# model = AutoModelForImageClassification.from_pretrained("victor/animals-classifier")
|
40 |
# model.eval()
|
41 |
|
42 |
+
##################################################
|
43 |
+
# 1) METADATA
|
44 |
+
##################################################
|
45 |
+
|
46 |
+
|
47 |
+
# this one works with PIL but we don't get all the metadata
|
48 |
+
def decode_utf16_little_endian(binary_data):
|
49 |
+
try:
|
50 |
+
# Decode the binary data as UTF-16 Little Endian
|
51 |
+
# print(f"Test:{binary_data.decode('utf-16-le')}")
|
52 |
+
# print(f"Type:{type(binary_data)}")
|
53 |
+
decoded_text = binary_data.decode("utf-16-le").rstrip("\x00")
|
54 |
+
return decoded_text
|
55 |
+
except Exception as e:
|
56 |
+
return f"Error decoding UTF-16 LE: {e}"
|
57 |
+
|
58 |
+
|
59 |
+
def get_exif(list_file_paths):
|
60 |
+
metadata_all_file = {}
|
61 |
+
df = pd.DataFrame()
|
62 |
+
for file_path in list_file_paths:
|
63 |
+
metadata = {}
|
64 |
+
print(file_path)
|
65 |
+
try:
|
66 |
+
# file_path = file_path_.split("/")[-1]
|
67 |
+
# df = pd.DataFrame()
|
68 |
+
# df['file_name'] = [file_path]
|
69 |
+
# print(df)
|
70 |
+
# print("inside the tryin")
|
71 |
+
image = Image.open(file_path)
|
72 |
+
exifdata = image._getexif()
|
73 |
+
if exifdata is not None:
|
74 |
+
# print(metadata)
|
75 |
+
for tagid, value in exifdata.items():
|
76 |
+
# print(tagid, value)
|
77 |
+
# print(f"Value:{value}")
|
78 |
+
tagname = TAGS.get(tagid, tagid)
|
79 |
+
# value = exifdata.get(tagid)
|
80 |
+
# Handle binary data
|
81 |
+
if isinstance(value, bytes):
|
82 |
+
# print(f"Value bytes {value}")
|
83 |
+
# print(f"Value bytes {type(value)}")
|
84 |
+
# print(f"Value str {decode_utf16_little_endian(value)}")
|
85 |
+
value = decode_utf16_little_endian(value)
|
86 |
+
metadata[tagname] = value
|
87 |
+
# print(f"\t{metadata}")
|
88 |
+
new_row = {"name": file_path, **metadata}
|
89 |
+
df = pd.concat([df, pd.DataFrame([new_row])], ignore_index=True)
|
90 |
+
# metadata_all_file[file_path] = metadata
|
91 |
+
else:
|
92 |
+
return "No EXIF metadata found."
|
93 |
+
except Exception as e:
|
94 |
+
return f"Error : {e}"
|
95 |
+
print(df)
|
96 |
+
df["name"] = df["name"].apply(lambda filepath: filepath.split("/")[-1])
|
97 |
+
print(df)
|
98 |
+
return df
|
99 |
+
|
100 |
+
|
101 |
+
##################################################
|
102 |
+
# 2) UPLOAD
|
103 |
+
##################################################
|
104 |
+
|
105 |
|
106 |
def get_file_names(files_):
|
107 |
"""
|
108 |
Get a list of the name of files splitted to get only the proper name
|
109 |
Input: Uploaded files
|
110 |
Output: ['name of file 1', 'name of file 2']"""
|
111 |
+
return [file.name for file in files_]
|
112 |
+
|
113 |
+
|
114 |
+
##################################################
|
115 |
+
# 3) ANNOTATIONS
|
116 |
+
##################################################
|
117 |
|
118 |
|
119 |
def get_annotation(files_):
|
|
|
122 |
Input: Uploaded files
|
123 |
Output: Df that contains: file_name | label | accuracy
|
124 |
"""
|
125 |
+
# df = pd.DataFrame(columns=["file_name", "label", "accuracy"])
|
126 |
+
df_exif = get_exif(get_file_names(files_))
|
127 |
+
print(df_exif)
|
128 |
+
return df_exif
|
129 |
+
|
130 |
+
|
131 |
+
def update_dataframe(df):
|
132 |
+
return df # Simply return the modified dataframe
|
133 |
|
134 |
|
135 |
def df_to_csv(df_):
|
|
|
142 |
return gr.File(value="output.csv", visible=True)
|
143 |
|
144 |
|
145 |
+
##################################################
|
146 |
+
# -1) MAIN
|
147 |
+
##################################################
|
148 |
+
|
149 |
+
|
150 |
def process_files(files_):
|
151 |
"""
|
152 |
Main function
|
|
|
156 |
- Get the csv output
|
157 |
"""
|
158 |
df = get_annotation(files_)
|
159 |
+
return df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
|
162 |
with gr.Blocks() as interface:
|
163 |
+
gr.Markdown("# Wildlife.ai Annotation tools")
|
164 |
+
# Upload data
|
165 |
with gr.Row():
|
166 |
upload_btn = gr.UploadButton(
|
167 |
+
"Upload raw data",
|
168 |
file_types=["image", "video"],
|
169 |
file_count="multiple",
|
170 |
)
|
171 |
+
update_btn = gr.Button("Modify raw data")
|
172 |
+
download_raw_btn = gr.Button("Generate raw data as csv")
|
173 |
+
download_modified_btn = gr.Button("Generate new data as a csv")
|
174 |
+
# Get results
|
175 |
+
gr.Markdown("## Results")
|
176 |
+
df = gr.DataFrame(interactive=False)
|
177 |
+
download_raw_btn.click(
|
178 |
+
fn=df_to_csv,
|
179 |
+
inputs=df,
|
180 |
+
outputs=gr.File(visible=False),
|
181 |
+
show_progress=False,
|
182 |
+
)
|
183 |
+
gr.Markdown("## Modified results")
|
184 |
+
df_modified = gr.DataFrame(interactive=True)
|
185 |
+
download_modified_btn.click(
|
186 |
+
fn=df_to_csv,
|
187 |
+
inputs=df_modified,
|
188 |
+
outputs=gr.File(visible=False),
|
189 |
+
show_progress=False,
|
190 |
)
|
191 |
+
# gr.Markdown("## Extract as CSV")
|
192 |
+
# Buttons
|
193 |
+
upload_btn.upload(fn=process_files, inputs=upload_btn, outputs=df)
|
194 |
+
update_btn.click(fn=update_dataframe, inputs=df, outputs=df_modified)
|
195 |
|
196 |
|
197 |
+
if __name__ == "__main__":
|
198 |
+
# file_path = "../data/rat1.jpg"
|
199 |
+
# get_exif(file_path)
|
200 |
+
interface.launch(debug=True)
|