dexay commited on
Commit
045a158
·
1 Parent(s): 0f8fc3c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -4
app.py CHANGED
@@ -4,12 +4,11 @@ import transformers
4
  from transformers import pipeline, TokenClassificationPipeline, BertForTokenClassification , AutoTokenizer , TextClassificationPipeline , AutoModelForSequenceClassification
5
 
6
  st.header("Knowledge extraction on Endocrine disruptors")
7
- st.text("This tool lets you extract relation triples concerning interactions between: endocrine disrupting chemicals, hormones, receptors and cancers.")
8
- st.text("It is the result of an end of studies project within ESI school and dedicated to biomedical researchers looking to extract precise information about the subject without digging into long publications.")
9
  x = st.text_area('Entre you text on EDCs:')
10
 
11
- if x[-1] not in ".?:":
12
- x += "."
13
  #model.to("cpu")
14
  tokenizer = AutoTokenizer.from_pretrained("dmis-lab/biobert-large-cased-v1.1", truncation = True, padding=True, model_max_length=512,)
15
  model_checkpoint = BertForTokenClassification.from_pretrained("dexay/Ner2HgF", )
@@ -20,6 +19,9 @@ token_classifier = pipeline("token-classification", tokenizer = tokenizer,model=
20
 
21
  st.text("Knowledge extraction is in progress ...")
22
 
 
 
 
23
  biotext = x
24
 
25
  #split document or text into sentences
 
4
  from transformers import pipeline, TokenClassificationPipeline, BertForTokenClassification , AutoTokenizer , TextClassificationPipeline , AutoModelForSequenceClassification
5
 
6
  st.header("Knowledge extraction on Endocrine disruptors")
7
+ st.write("This tool lets you extract relation triples concerning interactions between: endocrine disrupting chemicals, hormones, receptors and cancers.")
8
+ st.twrite("It is the result of an end of studies project within ESI school and dedicated to biomedical researchers looking to extract precise information about the subject without digging into long publications.")
9
  x = st.text_area('Entre you text on EDCs:')
10
 
11
+
 
12
  #model.to("cpu")
13
  tokenizer = AutoTokenizer.from_pretrained("dmis-lab/biobert-large-cased-v1.1", truncation = True, padding=True, model_max_length=512,)
14
  model_checkpoint = BertForTokenClassification.from_pretrained("dexay/Ner2HgF", )
 
19
 
20
  st.text("Knowledge extraction is in progress ...")
21
 
22
+ if x and x[-1] not in ".?:":
23
+ x += "."
24
+
25
  biotext = x
26
 
27
  #split document or text into sentences