dexay commited on
Commit
0f491a4
·
1 Parent(s): f9e2c1d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -9
app.py CHANGED
@@ -8,11 +8,11 @@ import postt
8
  from postt import postcor
9
  from transformers import pipeline, TokenClassificationPipeline, BertForTokenClassification , AutoTokenizer , TextClassificationPipeline , AutoModelForSequenceClassification
10
 
 
11
 
12
 
13
 
14
-
15
- st.header("Knowledge extraction on Endocrine disruptors")
16
  st.write("This tool lets you extract relation triples concerning interactions between: endocrine disrupting chemicals, hormones, receptors and cancers.")
17
  st.write("It is the result of an end of studies project within ESI school and dedicated to biomedical researchers looking to extract precise information about the subject without digging into long publications.")
18
 
@@ -33,6 +33,7 @@ if submit and len(x) != 0:
33
 
34
  tokenizer = AutoTokenizer.from_pretrained("dmis-lab/biobert-large-cased-v1.1", truncation = True, padding=True, model_max_length=512,)
35
  model_checkpoint = BertForTokenClassification.from_pretrained("dexay/Ner2HgF", )
 
36
  model_re = AutoModelForSequenceClassification.from_pretrained("dexay/reDs3others", )
37
 
38
  token_classifier = pipeline("token-classification", tokenizer = tokenizer,model=model_checkpoint, )
@@ -173,9 +174,8 @@ if submit and len(x) != 0:
173
 
174
  #lstSentEnc,lstSentEnt,lstSentbilbl
175
 
176
- st.text("Entities detected.")
177
- st.text("")
178
- st.text("Next: Relation detection ...")
179
 
180
 
181
  # Relation extraction part
@@ -311,16 +311,16 @@ if submit and len(x) != 0:
311
  st.table(edccandf)
312
  csv = edccandf.to_csv(index=False).encode('utf-8')
313
  with st.sidebar:
314
- st.write("You can only choose one download!!")
315
- st.write("we recommed ZIP file.")
316
- st.write("Download table only:")
317
  st.download_button(
318
  label="Download CSV",
319
  data=csv,
320
  file_name='Relation_triples_table.csv',
321
  mime='text/csv',
322
  )
323
- st.write("Download table plus separate csvs for each family of pairs:")
324
  with open("allcsvs.zip", "rb") as fp:
325
  btn = st.download_button(
326
  label="Download ZIP",
 
8
  from postt import postcor
9
  from transformers import pipeline, TokenClassificationPipeline, BertForTokenClassification , AutoTokenizer , TextClassificationPipeline , AutoModelForSequenceClassification
10
 
11
+ st.set_page_config(layout="wide")
12
 
13
 
14
 
15
+ st.title("Knowledge extraction: EDCs")
 
16
  st.write("This tool lets you extract relation triples concerning interactions between: endocrine disrupting chemicals, hormones, receptors and cancers.")
17
  st.write("It is the result of an end of studies project within ESI school and dedicated to biomedical researchers looking to extract precise information about the subject without digging into long publications.")
18
 
 
33
 
34
  tokenizer = AutoTokenizer.from_pretrained("dmis-lab/biobert-large-cased-v1.1", truncation = True, padding=True, model_max_length=512,)
35
  model_checkpoint = BertForTokenClassification.from_pretrained("dexay/Ner2HgF", )
36
+ st.caption("Downloading models")
37
  model_re = AutoModelForSequenceClassification.from_pretrained("dexay/reDs3others", )
38
 
39
  token_classifier = pipeline("token-classification", tokenizer = tokenizer,model=model_checkpoint, )
 
174
 
175
  #lstSentEnc,lstSentEnt,lstSentbilbl
176
 
177
+ st.caption("Entities detected.")
178
+ st.caption("Next: Relation detection ...")
 
179
 
180
 
181
  # Relation extraction part
 
311
  st.table(edccandf)
312
  csv = edccandf.to_csv(index=False).encode('utf-8')
313
  with st.sidebar:
314
+ st.subheader("You can only choose one download !!")
315
+ st.caption("we recommed ZIP file.")
316
+ st.write("Download table only :")
317
  st.download_button(
318
  label="Download CSV",
319
  data=csv,
320
  file_name='Relation_triples_table.csv',
321
  mime='text/csv',
322
  )
323
+ st.write("Download table plus separate csvs for each family of pairs :")
324
  with open("allcsvs.zip", "rb") as fp:
325
  btn = st.download_button(
326
  label="Download ZIP",