Update app.py
Browse files
app.py
CHANGED
@@ -6,221 +6,223 @@ from transformers import pipeline, TokenClassificationPipeline, BertForTokenCla
|
|
6 |
st.header("Knowledge extraction on Endocrine disruptors")
|
7 |
st.write("This tool lets you extract relation triples concerning interactions between: endocrine disrupting chemicals, hormones, receptors and cancers.")
|
8 |
st.write("It is the result of an end of studies project within ESI school and dedicated to biomedical researchers looking to extract precise information about the subject without digging into long publications.")
|
9 |
-
x = st.text_area('Entre you text on EDCs:')
|
10 |
|
|
|
|
|
|
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
x
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
flag = 0
|
32 |
-
tempsen = ""
|
33 |
-
for e in biotext:
|
34 |
-
tempsen += e
|
35 |
-
if e=="(":
|
36 |
-
flag = 1
|
37 |
-
if e==")":
|
38 |
-
flag = 0
|
39 |
-
if (e =="." or e =="?" or e ==":" ) and flag == 0 :
|
40 |
-
lstbiotext += [tempsen.strip()]
|
41 |
-
tempsen = ""
|
42 |
-
|
43 |
-
ddata = lstbiotext
|
44 |
-
|
45 |
-
#tokenized_dat = tokenize_function(ddata)
|
46 |
-
|
47 |
-
az = token_classifier(ddata)
|
48 |
-
|
49 |
-
|
50 |
-
#code to convert NER output to RE input compatible format
|
51 |
-
|
52 |
-
#tg_inorder are decoding of labels on which the model was fine tuned on
|
53 |
-
|
54 |
-
tg_inorder = ['O',
|
55 |
-
'B-HORMONE',
|
56 |
-
'B-EXP_PER',
|
57 |
-
'I-HORMONE',
|
58 |
-
'I-CANCER',
|
59 |
-
'I-EDC',
|
60 |
-
'B-RECEPTOR',
|
61 |
-
'B-CANCER',
|
62 |
-
'I-RECEPTOR',
|
63 |
-
'B-EDC',
|
64 |
-
'PAD']
|
65 |
-
|
66 |
-
lstSentEnc = []
|
67 |
-
lstSentbilbl = []
|
68 |
-
lstSentEnt = []
|
69 |
-
for itsent in az:
|
70 |
-
|
71 |
-
sentaz = itsent
|
72 |
-
ph = []
|
73 |
-
phl = []
|
74 |
-
for e in sentaz:
|
75 |
-
if e["word"][0]=="#" and len(ph)!=0:
|
76 |
-
ph[-1]+= e["word"][2:]
|
77 |
-
else:
|
78 |
-
ph += [e["word"]]
|
79 |
-
phl += [e["entity"]]
|
80 |
-
|
81 |
-
|
82 |
-
phltr = []
|
83 |
-
for e in phl:
|
84 |
-
phltr += [tg_inorder[int(e[-1])] if len(e)==7 else tg_inorder[int(e[-2:])]]
|
85 |
|
86 |
-
|
87 |
-
nwph = []
|
88 |
-
nwphltr = []
|
89 |
flag = 0
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
-
|
131 |
-
if nwphltr.count("O") <= len(nwphltr)-2:
|
132 |
-
for i in range(len(nwph)-1):
|
133 |
-
if nwphltr[i] != "O":
|
134 |
-
for j in range(i,len(nwph)):
|
135 |
-
if nwphltr[j] != "O" and nwphltr[j] != nwphltr[i] and {nwphltr[j], nwphltr[i]} != {"B-CANCER","B-RECEPTOR"}:
|
136 |
-
sen2ad = ""
|
137 |
-
for g in range(i):
|
138 |
-
sen2ad += nwph[g]+" "
|
139 |
-
sen2ad += "<e1>"+nwph[i]+"</e1> "
|
140 |
-
|
141 |
-
for t in range(i+1,j):
|
142 |
-
sen2ad += nwph[t]+" "
|
143 |
-
sen2ad += "<e2>"+nwph[j]+"</e2>"
|
144 |
-
if j<len(nwph):
|
145 |
-
for l in range(j+1,len(nwph)):
|
146 |
-
sen2ad += " "+nwph[l]
|
147 |
-
lstSentEnc += [sen2ad]
|
148 |
-
lstSentbilbl += [[nwphltr[i],nwphltr[j]]]
|
149 |
-
lstSentEnt += [[nwph[i],nwph[j]]]
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
#lstSentEnc,lstSentEnt,lstSentbilbl
|
154 |
-
|
155 |
-
st.text("Entities detected, Next: Relation detection ...")
|
156 |
-
|
157 |
-
|
158 |
-
# Relation extraction part
|
159 |
-
|
160 |
-
token_classifier = pipeline("text-classification", tokenizer = tokenizer,model=model_re,
|
161 |
-
)
|
162 |
-
|
163 |
-
rrdata = lstSentEnc
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
outre = token_classifier(rrdata)
|
168 |
-
|
169 |
-
|
170 |
-
trLABELS = ['INCREASE_RISK(e1,e2)',
|
171 |
-
'SPEED_UP(e2,e1)',
|
172 |
-
'DECREASE_ACTIVITY(e1,e2)',
|
173 |
-
'NO_ASSOCIATION(e1,e2)',
|
174 |
-
'DECREASE(e1,e2)',
|
175 |
-
'BLOCK(e1,e2)',
|
176 |
-
'CAUSE(e1,e2)',
|
177 |
-
'ACTIVATE(e2,e1)',
|
178 |
-
'DEVELOP(e2,e1)',
|
179 |
-
'ALTER(e1,e2)',
|
180 |
-
'INCREASE_RISK(e2,e1)',
|
181 |
-
'SPEED_UP(e1,e2)',
|
182 |
-
'INTERFER(e1,e2)',
|
183 |
-
'DECREASE(e2,e1)',
|
184 |
-
'NO_ASSOCIATION(e2,e1)',
|
185 |
-
'INCREASE(e2,e1)',
|
186 |
-
'INTERFER(e2,e1)',
|
187 |
-
'ACTIVATE(e1,e2)',
|
188 |
-
'INCREASE(e1,e2)',
|
189 |
-
'MIMIC(e1,e2)',
|
190 |
-
'MIMIC(e2,e1)',
|
191 |
-
'BLOCK(e2,e1)',
|
192 |
-
'other',
|
193 |
-
'BIND(e2,e1)',
|
194 |
-
'INCREASE_ACTIVITY(e2,e1)',
|
195 |
-
'ALTER(e2,e1)',
|
196 |
-
'CAUSE(e2,e1)',
|
197 |
-
'BIND(e1,e2)',
|
198 |
-
'DEVELOP(e1,e2)',
|
199 |
-
'DECREASE_ACTIVITY(e2,e1)']
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
outrelbl = []
|
204 |
-
for e in outre:
|
205 |
-
outrelbl += [trLABELS[int(e['label'][-1])] if len(e["label"])==7 else trLABELS[int(e['label'][-2:])] ]
|
206 |
-
|
207 |
-
for i in range(len(outrelbl)):
|
208 |
-
if "(e2,e1)" in outrelbl[i]:
|
209 |
-
lstSentbilbl[i][0],lstSentbilbl[i][1] = lstSentbilbl[i][1],lstSentbilbl[i][0]
|
210 |
-
lstSentEnt[i][0],lstSentEnt[i][1] = lstSentEnt[i][1],lstSentEnt[i][0]
|
211 |
-
|
212 |
-
|
213 |
-
edccan = []
|
214 |
-
|
215 |
-
|
216 |
-
for i in range(len(outrelbl)):
|
217 |
-
if outrelbl[i] != "other":
|
218 |
-
edccan += [[lstSentEnc[i],lstSentEnt[i][0], lstSentEnt[i][1],lstSentbilbl[i][0]+" "+outrelbl[i][:-7]+" "+lstSentbilbl[i][1]]]
|
219 |
-
|
220 |
-
edccandf = pd.DataFrame(edccan, columns= ["Sentence", "Entity 1", "Entity 2", "Relation"] )
|
221 |
-
|
222 |
-
if x:
|
223 |
-
out = token_classifier(x)
|
224 |
st.table(edccandf)
|
225 |
|
226 |
|
|
|
6 |
st.header("Knowledge extraction on Endocrine disruptors")
|
7 |
st.write("This tool lets you extract relation triples concerning interactions between: endocrine disrupting chemicals, hormones, receptors and cancers.")
|
8 |
st.write("It is the result of an end of studies project within ESI school and dedicated to biomedical researchers looking to extract precise information about the subject without digging into long publications.")
|
|
|
9 |
|
10 |
+
form = st.form(key='my-form')
|
11 |
+
x = form.text_input('Enter your text')
|
12 |
+
submit = form.form_submit_button('Submit')
|
13 |
|
14 |
+
if submit and len(x) != 0:
|
15 |
+
#model.to("cpu")
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained("dmis-lab/biobert-large-cased-v1.1", truncation = True, padding=True, model_max_length=512,)
|
17 |
+
model_checkpoint = BertForTokenClassification.from_pretrained("dexay/Ner2HgF", )
|
18 |
+
|
19 |
+
|
20 |
+
model_re = AutoModelForSequenceClassification.from_pretrained("dexay/reDs3others", )
|
21 |
+
token_classifier = pipeline("token-classification", tokenizer = tokenizer,model=model_checkpoint, )
|
22 |
+
|
23 |
+
st.text("Knowledge extraction is in progress ...")
|
24 |
+
|
25 |
+
if x[-1] not in ".?:":
|
26 |
+
x += "."
|
27 |
+
|
28 |
+
biotext = x
|
29 |
+
|
30 |
+
#split document or text into sentences
|
31 |
+
|
32 |
+
lstbiotext = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
|
|
|
|
|
|
34 |
flag = 0
|
35 |
+
tempsen = ""
|
36 |
+
for e in biotext:
|
37 |
+
tempsen += e
|
38 |
+
if e=="(":
|
39 |
+
flag = 1
|
40 |
+
if e==")":
|
41 |
+
flag = 0
|
42 |
+
if (e =="." or e =="?" or e ==":" ) and flag == 0 :
|
43 |
+
lstbiotext += [tempsen.strip()]
|
44 |
+
tempsen = ""
|
45 |
+
|
46 |
+
ddata = lstbiotext
|
47 |
+
|
48 |
+
#tokenized_dat = tokenize_function(ddata)
|
49 |
+
|
50 |
+
az = token_classifier(ddata)
|
51 |
+
|
52 |
+
|
53 |
+
#code to convert NER output to RE input compatible format
|
54 |
+
|
55 |
+
#tg_inorder are decoding of labels on which the model was fine tuned on
|
56 |
+
|
57 |
+
tg_inorder = ['O',
|
58 |
+
'B-HORMONE',
|
59 |
+
'B-EXP_PER',
|
60 |
+
'I-HORMONE',
|
61 |
+
'I-CANCER',
|
62 |
+
'I-EDC',
|
63 |
+
'B-RECEPTOR',
|
64 |
+
'B-CANCER',
|
65 |
+
'I-RECEPTOR',
|
66 |
+
'B-EDC',
|
67 |
+
'PAD']
|
68 |
+
|
69 |
+
lstSentEnc = []
|
70 |
+
lstSentbilbl = []
|
71 |
+
lstSentEnt = []
|
72 |
+
for itsent in az:
|
73 |
+
|
74 |
+
sentaz = itsent
|
75 |
+
ph = []
|
76 |
+
phl = []
|
77 |
+
for e in sentaz:
|
78 |
+
if e["word"][0]=="#" and len(ph)!=0:
|
79 |
+
ph[-1]+= e["word"][2:]
|
80 |
+
else:
|
81 |
+
ph += [e["word"]]
|
82 |
+
phl += [e["entity"]]
|
83 |
+
|
84 |
+
|
85 |
+
phltr = []
|
86 |
+
for e in phl:
|
87 |
+
phltr += [tg_inorder[int(e[-1])] if len(e)==7 else tg_inorder[int(e[-2:])]]
|
88 |
+
|
89 |
+
|
90 |
+
nwph = []
|
91 |
+
nwphltr = []
|
92 |
+
flag = 0
|
93 |
+
for i in range(len(phltr)-2):
|
94 |
+
if phltr[i]=="O" and flag != 3 :
|
95 |
+
nwph += [ph[i]]
|
96 |
+
nwphltr += [phltr[i]]
|
97 |
+
continue
|
98 |
+
elif flag == 3:
|
99 |
+
nwph[-1] += " "+ph[i]
|
100 |
+
flag = 1
|
101 |
+
continue
|
102 |
+
elif phltr[i][2:]==phltr[i+1][2:] and phltr[i+1][0]=="I" and flag == 0:
|
103 |
+
nwph += [ph[i]]
|
104 |
+
nwphltr += [phltr[i]]
|
105 |
+
flag = 1
|
106 |
+
continue
|
107 |
+
elif phltr[i][2:]==phltr[i+1][2:] and phltr[i+1][0]=="I" and flag == 1:
|
108 |
+
nwph[-1] += " "+ph[i]
|
109 |
+
continue
|
110 |
+
# xox with flag == 3
|
111 |
+
elif phltr[i][2:]==phltr[i+2][2:] and phltr[i+1]=="O" and phltr[i+2][0]=="I" and flag == 0:
|
112 |
+
nwph += [ph[i]]
|
113 |
+
nwphltr += [phltr[i]]
|
114 |
+
flag = 3
|
115 |
+
continue
|
116 |
+
elif phltr[i][2:]==phltr[i+2][2:] and phltr[i+1]=="O" and phltr[i+2][0]=="I" and flag == 1:
|
117 |
+
nwph[-1] += " "+ph[i]
|
118 |
+
flag = 3
|
119 |
+
continue
|
120 |
+
#\ xox
|
121 |
+
elif flag == 1:
|
122 |
+
nwph[-1] += " "+ph[i]
|
123 |
+
flag = 0
|
124 |
+
continue
|
125 |
+
else :
|
126 |
+
nwph += [ph[i]]
|
127 |
+
nwphltr += [phltr[i]]
|
128 |
+
continue
|
129 |
+
|
130 |
+
|
131 |
+
# nwph,nwphltr,len(nwph),len(nwphltr)
|
132 |
+
|
133 |
+
|
134 |
+
if nwphltr.count("O") <= len(nwphltr)-2:
|
135 |
+
for i in range(len(nwph)-1):
|
136 |
+
if nwphltr[i] != "O":
|
137 |
+
for j in range(i,len(nwph)):
|
138 |
+
if nwphltr[j] != "O" and nwphltr[j] != nwphltr[i] and {nwphltr[j], nwphltr[i]} != {"B-CANCER","B-RECEPTOR"}:
|
139 |
+
sen2ad = ""
|
140 |
+
for g in range(i):
|
141 |
+
sen2ad += nwph[g]+" "
|
142 |
+
sen2ad += "<e1>"+nwph[i]+"</e1> "
|
143 |
+
|
144 |
+
for t in range(i+1,j):
|
145 |
+
sen2ad += nwph[t]+" "
|
146 |
+
sen2ad += "<e2>"+nwph[j]+"</e2>"
|
147 |
+
if j<len(nwph):
|
148 |
+
for l in range(j+1,len(nwph)):
|
149 |
+
sen2ad += " "+nwph[l]
|
150 |
+
lstSentEnc += [sen2ad]
|
151 |
+
lstSentbilbl += [[nwphltr[i],nwphltr[j]]]
|
152 |
+
lstSentEnt += [[nwph[i],nwph[j]]]
|
153 |
+
|
154 |
+
|
155 |
+
|
156 |
+
#lstSentEnc,lstSentEnt,lstSentbilbl
|
157 |
+
|
158 |
+
st.text("Entities detected, Next: Relation detection ...")
|
159 |
+
|
160 |
+
|
161 |
+
# Relation extraction part
|
162 |
+
|
163 |
+
token_classifier = pipeline("text-classification", tokenizer = tokenizer,model=model_re,
|
164 |
+
)
|
165 |
+
|
166 |
+
rrdata = lstSentEnc
|
167 |
+
|
168 |
+
|
169 |
+
|
170 |
+
outre = token_classifier(rrdata)
|
171 |
+
|
172 |
+
|
173 |
+
trLABELS = ['INCREASE_RISK(e1,e2)',
|
174 |
+
'SPEED_UP(e2,e1)',
|
175 |
+
'DECREASE_ACTIVITY(e1,e2)',
|
176 |
+
'NO_ASSOCIATION(e1,e2)',
|
177 |
+
'DECREASE(e1,e2)',
|
178 |
+
'BLOCK(e1,e2)',
|
179 |
+
'CAUSE(e1,e2)',
|
180 |
+
'ACTIVATE(e2,e1)',
|
181 |
+
'DEVELOP(e2,e1)',
|
182 |
+
'ALTER(e1,e2)',
|
183 |
+
'INCREASE_RISK(e2,e1)',
|
184 |
+
'SPEED_UP(e1,e2)',
|
185 |
+
'INTERFER(e1,e2)',
|
186 |
+
'DECREASE(e2,e1)',
|
187 |
+
'NO_ASSOCIATION(e2,e1)',
|
188 |
+
'INCREASE(e2,e1)',
|
189 |
+
'INTERFER(e2,e1)',
|
190 |
+
'ACTIVATE(e1,e2)',
|
191 |
+
'INCREASE(e1,e2)',
|
192 |
+
'MIMIC(e1,e2)',
|
193 |
+
'MIMIC(e2,e1)',
|
194 |
+
'BLOCK(e2,e1)',
|
195 |
+
'other',
|
196 |
+
'BIND(e2,e1)',
|
197 |
+
'INCREASE_ACTIVITY(e2,e1)',
|
198 |
+
'ALTER(e2,e1)',
|
199 |
+
'CAUSE(e2,e1)',
|
200 |
+
'BIND(e1,e2)',
|
201 |
+
'DEVELOP(e1,e2)',
|
202 |
+
'DECREASE_ACTIVITY(e2,e1)']
|
203 |
+
|
204 |
+
|
205 |
+
|
206 |
+
outrelbl = []
|
207 |
+
for e in outre:
|
208 |
+
outrelbl += [trLABELS[int(e['label'][-1])] if len(e["label"])==7 else trLABELS[int(e['label'][-2:])] ]
|
209 |
+
|
210 |
+
for i in range(len(outrelbl)):
|
211 |
+
if "(e2,e1)" in outrelbl[i]:
|
212 |
+
lstSentbilbl[i][0],lstSentbilbl[i][1] = lstSentbilbl[i][1],lstSentbilbl[i][0]
|
213 |
+
lstSentEnt[i][0],lstSentEnt[i][1] = lstSentEnt[i][1],lstSentEnt[i][0]
|
214 |
+
|
215 |
+
|
216 |
+
edccan = []
|
217 |
+
|
218 |
+
|
219 |
+
for i in range(len(outrelbl)):
|
220 |
+
if outrelbl[i] != "other":
|
221 |
+
edccan += [[lstSentEnc[i],lstSentEnt[i][0], lstSentEnt[i][1],lstSentbilbl[i][0]+" "+outrelbl[i][:-7]+" "+lstSentbilbl[i][1]]]
|
222 |
+
|
223 |
+
edccandf = pd.DataFrame(edccan, columns= ["Sentence", "Entity 1", "Entity 2", "Relation"] )
|
224 |
+
|
225 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
st.table(edccandf)
|
227 |
|
228 |
|