Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,15 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
import transformers
|
|
|
|
|
|
|
4 |
from transformers import pipeline, TokenClassificationPipeline, BertForTokenClassification , AutoTokenizer , TextClassificationPipeline , AutoModelForSequenceClassification
|
5 |
|
|
|
|
|
|
|
|
|
6 |
st.header("Knowledge extraction on Endocrine disruptors")
|
7 |
st.write("This tool lets you extract relation triples concerning interactions between: endocrine disrupting chemicals, hormones, receptors and cancers.")
|
8 |
st.write("It is the result of an end of studies project within ESI school and dedicated to biomedical researchers looking to extract precise information about the subject without digging into long publications.")
|
@@ -217,16 +224,30 @@ if submit and len(x) != 0:
|
|
217 |
|
218 |
|
219 |
edccan = []
|
220 |
-
|
221 |
|
222 |
for i in range(len(outrelbl)):
|
223 |
if outrelbl[i] != "other":
|
224 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
|
226 |
edccandf = pd.DataFrame(edccan, columns= ["Sentence", "Entity 1", "Entity 2", "Relation"] )
|
227 |
|
228 |
|
229 |
st.table(edccandf)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
230 |
|
231 |
|
232 |
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
import transformers
|
4 |
+
import re
|
5 |
+
import postt
|
6 |
+
from postt import postcor
|
7 |
from transformers import pipeline, TokenClassificationPipeline, BertForTokenClassification , AutoTokenizer , TextClassificationPipeline , AutoModelForSequenceClassification
|
8 |
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
st.header("Knowledge extraction on Endocrine disruptors")
|
14 |
st.write("This tool lets you extract relation triples concerning interactions between: endocrine disrupting chemicals, hormones, receptors and cancers.")
|
15 |
st.write("It is the result of an end of studies project within ESI school and dedicated to biomedical researchers looking to extract precise information about the subject without digging into long publications.")
|
|
|
224 |
|
225 |
|
226 |
edccan = []
|
227 |
+
edccanbis = []
|
228 |
|
229 |
for i in range(len(outrelbl)):
|
230 |
if outrelbl[i] != "other":
|
231 |
+
edccanbis += [[lstSentEnt[i][0], lstSentEnt[i][1], outrelbl[i][:-7], lstSentEnc[i], lstSentbilbl[i]]]
|
232 |
+
#edccan += [[lstSentEnc[i],lstSentEnt[i][0]+" ["+lstSentbilbl[i][0][2:]+"]", lstSentEnt[i][1]+" ["+lstSentbilbl[i][1][2:]+"]",outrelbl[i][:-7]]]
|
233 |
+
|
234 |
+
edccanbis = postcor(edccanbis[3:])
|
235 |
+
|
236 |
+
|
237 |
+
for e in edccanbis:
|
238 |
+
edccan += [[e[3],e[0]+" ["+e[-1][0][2:]+"]", e[1]+" ["+e[-1][1][2:]+"]",e[2][:-7]]]
|
239 |
|
240 |
edccandf = pd.DataFrame(edccan, columns= ["Sentence", "Entity 1", "Entity 2", "Relation"] )
|
241 |
|
242 |
|
243 |
st.table(edccandf)
|
244 |
+
csv = edccandf.to_csv(index=False).encode('utf-8')
|
245 |
+
st.download_button(
|
246 |
+
label="Download data as CSV",
|
247 |
+
data=csv,
|
248 |
+
file_name='Relation_triples.csv',
|
249 |
+
mime='text/csv',
|
250 |
+
)
|
251 |
|
252 |
|
253 |
|