dexay commited on
Commit
d5e08e5
·
1 Parent(s): 7e610e7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +23 -2
app.py CHANGED
@@ -1,8 +1,15 @@
1
  import streamlit as st
2
  import pandas as pd
3
  import transformers
 
 
 
4
  from transformers import pipeline, TokenClassificationPipeline, BertForTokenClassification , AutoTokenizer , TextClassificationPipeline , AutoModelForSequenceClassification
5
 
 
 
 
 
6
  st.header("Knowledge extraction on Endocrine disruptors")
7
  st.write("This tool lets you extract relation triples concerning interactions between: endocrine disrupting chemicals, hormones, receptors and cancers.")
8
  st.write("It is the result of an end of studies project within ESI school and dedicated to biomedical researchers looking to extract precise information about the subject without digging into long publications.")
@@ -217,16 +224,30 @@ if submit and len(x) != 0:
217
 
218
 
219
  edccan = []
220
-
221
 
222
  for i in range(len(outrelbl)):
223
  if outrelbl[i] != "other":
224
- edccan += [[lstSentEnc[i],lstSentEnt[i][0]+" ["+lstSentbilbl[i][0][2:]+"]", lstSentEnt[i][1]+" ["+lstSentbilbl[i][1][2:]+"]",outrelbl[i][:-7]]]
 
 
 
 
 
 
 
225
 
226
  edccandf = pd.DataFrame(edccan, columns= ["Sentence", "Entity 1", "Entity 2", "Relation"] )
227
 
228
 
229
  st.table(edccandf)
 
 
 
 
 
 
 
230
 
231
 
232
 
 
1
  import streamlit as st
2
  import pandas as pd
3
  import transformers
4
+ import re
5
+ import postt
6
+ from postt import postcor
7
  from transformers import pipeline, TokenClassificationPipeline, BertForTokenClassification , AutoTokenizer , TextClassificationPipeline , AutoModelForSequenceClassification
8
 
9
+
10
+
11
+
12
+
13
  st.header("Knowledge extraction on Endocrine disruptors")
14
  st.write("This tool lets you extract relation triples concerning interactions between: endocrine disrupting chemicals, hormones, receptors and cancers.")
15
  st.write("It is the result of an end of studies project within ESI school and dedicated to biomedical researchers looking to extract precise information about the subject without digging into long publications.")
 
224
 
225
 
226
  edccan = []
227
+ edccanbis = []
228
 
229
  for i in range(len(outrelbl)):
230
  if outrelbl[i] != "other":
231
+ edccanbis += [[lstSentEnt[i][0], lstSentEnt[i][1], outrelbl[i][:-7], lstSentEnc[i], lstSentbilbl[i]]]
232
+ #edccan += [[lstSentEnc[i],lstSentEnt[i][0]+" ["+lstSentbilbl[i][0][2:]+"]", lstSentEnt[i][1]+" ["+lstSentbilbl[i][1][2:]+"]",outrelbl[i][:-7]]]
233
+
234
+ edccanbis = postcor(edccanbis[3:])
235
+
236
+
237
+ for e in edccanbis:
238
+ edccan += [[e[3],e[0]+" ["+e[-1][0][2:]+"]", e[1]+" ["+e[-1][1][2:]+"]",e[2][:-7]]]
239
 
240
  edccandf = pd.DataFrame(edccan, columns= ["Sentence", "Entity 1", "Entity 2", "Relation"] )
241
 
242
 
243
  st.table(edccandf)
244
+ csv = edccandf.to_csv(index=False).encode('utf-8')
245
+ st.download_button(
246
+ label="Download data as CSV",
247
+ data=csv,
248
+ file_name='Relation_triples.csv',
249
+ mime='text/csv',
250
+ )
251
 
252
 
253