dexay commited on
Commit
dc1be42
·
1 Parent(s): a127264

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +67 -2
app.py CHANGED
@@ -1,12 +1,15 @@
1
  import streamlit as st
2
  import transformers
3
- from transformers import pipeline, TokenClassificationPipeline, BertForTokenClassification , AutoTokenizer
4
 
5
  x = st.text_area('enter')
6
 
7
  #model.to("cpu")
8
  tokenizer = AutoTokenizer.from_pretrained("dmis-lab/biobert-large-cased-v1.1", truncation = True, padding=True, model_max_length=512,)
9
  model_checkpoint = BertForTokenClassification.from_pretrained("dexay/Ner2HgF", )
 
 
 
10
  token_classifier = pipeline("token-classification", tokenizer = tokenizer,model=model_checkpoint, )
11
 
12
 
@@ -140,9 +143,71 @@ for itsent in az:
140
 
141
  #lstSentEnc,lstSentEnt,lstSentbilbl
142
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
143
  if x:
144
  out = token_classifier(x)
145
- st.markdown(lstSentEnc)
146
 
147
 
148
 
 
1
  import streamlit as st
2
  import transformers
3
+ from transformers import pipeline, TokenClassificationPipeline, BertForTokenClassification , AutoTokenizer , TextClassificationPipeline , AutoModelForSequenceClassification
4
 
5
  x = st.text_area('enter')
6
 
7
  #model.to("cpu")
8
  tokenizer = AutoTokenizer.from_pretrained("dmis-lab/biobert-large-cased-v1.1", truncation = True, padding=True, model_max_length=512,)
9
  model_checkpoint = BertForTokenClassification.from_pretrained("dexay/Ner2HgF", )
10
+
11
+
12
+ model_re = AutoModelForSequenceClassification.from_pretrained("dexay/reDs3others", truncation = True, padding=True, model_max_length=512,)
13
  token_classifier = pipeline("token-classification", tokenizer = tokenizer,model=model_checkpoint, )
14
 
15
 
 
143
 
144
  #lstSentEnc,lstSentEnt,lstSentbilbl
145
 
146
+ # Relation extraction part
147
+
148
+ token_classifier = pipeline("text-classification", tokenizer = tokenizer,model=model_re,
149
+ )
150
+
151
+ rrdata = lstSentEnc
152
+
153
+
154
+
155
+ outre = token_classifier(rrdata)
156
+
157
+
158
+ trLABELS = ['INCREASE_RISK(e1,e2)',
159
+ 'SPEED_UP(e2,e1)',
160
+ 'DECREASE_ACTIVITY(e1,e2)',
161
+ 'NO_ASSOCIATION(e1,e2)',
162
+ 'DECREASE(e1,e2)',
163
+ 'BLOCK(e1,e2)',
164
+ 'CAUSE(e1,e2)',
165
+ 'ACTIVATE(e2,e1)',
166
+ 'DEVELOP(e2,e1)',
167
+ 'ALTER(e1,e2)',
168
+ 'INCREASE_RISK(e2,e1)',
169
+ 'SPEED_UP(e1,e2)',
170
+ 'INTERFER(e1,e2)',
171
+ 'DECREASE(e2,e1)',
172
+ 'NO_ASSOCIATION(e2,e1)',
173
+ 'INCREASE(e2,e1)',
174
+ 'INTERFER(e2,e1)',
175
+ 'ACTIVATE(e1,e2)',
176
+ 'INCREASE(e1,e2)',
177
+ 'MIMIC(e1,e2)',
178
+ 'MIMIC(e2,e1)',
179
+ 'BLOCK(e2,e1)',
180
+ 'other',
181
+ 'BIND(e2,e1)',
182
+ 'INCREASE_ACTIVITY(e2,e1)',
183
+ 'ALTER(e2,e1)',
184
+ 'CAUSE(e2,e1)',
185
+ 'BIND(e1,e2)',
186
+ 'DEVELOP(e1,e2)',
187
+ 'DECREASE_ACTIVITY(e2,e1)']
188
+
189
+
190
+
191
+ outrelbl = []
192
+ for e in outre:
193
+ outrelbl += [trLABELS[int(e['label'][-1])] if len(e["label"])==7 else trLABELS[int(e['label'][-2:])] ]
194
+
195
+ for i in range(len(outrelbl)):
196
+ if "(e2,e1)" in outrelbl[i]:
197
+ lstSentbilbl[i][0],lstSentbilbl[i][1] = lstSentbilbl[i][1],lstSentbilbl[i][0]
198
+ lstSentEnt[i][0],lstSentEnt[i][1] = lstSentEnt[i][1],lstSentEnt[i][0]
199
+
200
+
201
+ edccan = []
202
+
203
+
204
+ for i in range(len(outrelbl)):
205
+ if outrelbl[i]== "other":
206
+ edccan += [[lstSentEnc[i],lstSentEnt[i][0], lstSentEnt[i][1],lstSentbilbl[i][0]+" "+outrelbl[i][:-7]+" "+lstSentbilbl[i][1]]]
207
+
208
  if x:
209
  out = token_classifier(x)
210
+ st.markdown(edccan)
211
 
212
 
213