| 
							 | 
						import pandas as pd | 
					
					
						
						| 
							 | 
						import numpy as np | 
					
					
						
						| 
							 | 
						from lightgbm import LGBMRegressor | 
					
					
						
						| 
							 | 
						from sklearn.model_selection import KFold | 
					
					
						
						| 
							 | 
						from sklearn.metrics import mean_absolute_error | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						train_data = pd.read_csv("./input/train.csv") | 
					
					
						
						| 
							 | 
						test_data = pd.read_csv("./input/test.csv") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						numeric_columns_train = train_data.select_dtypes(include=[np.number]).columns | 
					
					
						
						| 
							 | 
						train_data[numeric_columns_train] = train_data[numeric_columns_train].fillna( | 
					
					
						
						| 
							 | 
						    train_data[numeric_columns_train].median() | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						numeric_columns_test = test_data.select_dtypes(include=[np.number]).columns | 
					
					
						
						| 
							 | 
						test_data[numeric_columns_test] = test_data[numeric_columns_test].fillna( | 
					
					
						
						| 
							 | 
						    test_data[numeric_columns_test].median() | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						X = train_data.drop(["row_id", "target"], axis=1) | 
					
					
						
						| 
							 | 
						y = train_data["target"] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						model = LGBMRegressor() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						kf = KFold(n_splits=10, shuffle=True, random_state=42) | 
					
					
						
						| 
							 | 
						mae_scores = [] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						for train_index, val_index in kf.split(X): | 
					
					
						
						| 
							 | 
						    X_train, X_val = X.iloc[train_index], X.iloc[val_index] | 
					
					
						
						| 
							 | 
						    y_train, y_val = y.iloc[train_index], y.iloc[val_index] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    model.fit(X_train, y_train) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    y_pred = model.predict(X_val) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    mae = mean_absolute_error(y_val, y_pred) | 
					
					
						
						| 
							 | 
						    mae_scores.append(mae) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						print(f"Average MAE: {np.mean(mae_scores)}") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						test_features = test_data.drop(["row_id"], axis=1) | 
					
					
						
						| 
							 | 
						test_data["target"] = model.predict(test_features) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						submission = test_data[["row_id", "target"]] | 
					
					
						
						| 
							 | 
						submission.to_csv("./working/submission.csv", index=False) | 
					
					
						
						| 
							 | 
						
 |