import pandas as pd from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # Load the data train_data = pd.read_csv("./input/train.csv") test_data = pd.read_csv("./input/test.csv") # Prepare the data X = train_data.drop(["Id", "Cover_Type"], axis=1) y = train_data["Cover_Type"] X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42) # Initialize the model rf = RandomForestClassifier(n_estimators=100, random_state=42) # Train the model rf.fit(X_train, y_train) # Validate the model y_pred = rf.predict(X_val) accuracy = accuracy_score(y_val, y_pred) print(f"Validation Accuracy: {accuracy}") # Predict on test data test_ids = test_data["Id"] test_data = test_data.drop("Id", axis=1) test_predictions = rf.predict(test_data) # Save the predictions submission = pd.DataFrame({"Id": test_ids, "Cover_Type": test_predictions}) submission.to_csv("./working/submission.csv", index=False)