Spaces:
Sleeping
Sleeping
Upload 9 files
Browse files- app.py +64 -0
- corpus_tfidf_pos.mm +0 -0
- corpus_tfidf_pos.mm.index +0 -0
- dictionary.dict +0 -0
- lda.model +3 -0
- lda.model.expElogbeta.npy +3 -0
- lda.model.id2word +0 -0
- lda.model.state +0 -0
- requirements.txt +6 -0
app.py
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import re
|
| 3 |
+
import pandas as pd
|
| 4 |
+
from transformers import pipeline
|
| 5 |
+
from gensim.models import LdaModel
|
| 6 |
+
from gensim.corpora import Dictionary
|
| 7 |
+
|
| 8 |
+
# Function to preprocess text
|
| 9 |
+
def text_preprocess(teks):
|
| 10 |
+
teks = teks.lower()
|
| 11 |
+
teks = re.sub("@[A-Za-z0-9_]+", " ", teks)
|
| 12 |
+
teks = re.sub("#[A-Za-z0-9_]+", " ", teks)
|
| 13 |
+
teks = re.sub(r"\\n", " ", teks)
|
| 14 |
+
teks = teks.strip()
|
| 15 |
+
teks = re.sub(r"http\S+", " ", teks)
|
| 16 |
+
teks = re.sub(r"www.\S+", " ", teks)
|
| 17 |
+
teks = re.sub("[^A-Za-z\s']", " ", teks)
|
| 18 |
+
return teks
|
| 19 |
+
|
| 20 |
+
# Function to perform inference and get the topic with the highest probability
|
| 21 |
+
def get_highest_probability_topic(lda_model, dictionary, new_document, topic_names):
|
| 22 |
+
new_bow = dictionary.doc2bow(new_document.split())
|
| 23 |
+
topic_distribution = lda_model.get_document_topics(new_bow, minimum_probability=0)
|
| 24 |
+
|
| 25 |
+
highest_probability_topic = max(topic_distribution, key=lambda x: x[1])
|
| 26 |
+
topic_id, probability = highest_probability_topic
|
| 27 |
+
topic_name = topic_names.get(topic_id, f"Topic {topic_id}")
|
| 28 |
+
|
| 29 |
+
return topic_name, probability
|
| 30 |
+
|
| 31 |
+
# Load sentiment analysis model
|
| 32 |
+
pretrained_name = "w11wo/indonesian-roberta-base-sentiment-classifier"
|
| 33 |
+
nlp = pipeline("sentiment-analysis", model=pretrained_name, tokenizer=pretrained_name)
|
| 34 |
+
|
| 35 |
+
# Streamlit app
|
| 36 |
+
def main():
|
| 37 |
+
st.title("Sentiment Analysis and Topic Inference App")
|
| 38 |
+
st.write("Enter your text below:")
|
| 39 |
+
input_text = st.text_area("Input Text")
|
| 40 |
+
|
| 41 |
+
if st.button("Analyze Sentiment"):
|
| 42 |
+
processed_text = text_preprocess(input_text)
|
| 43 |
+
result = nlp(processed_text)
|
| 44 |
+
sentiment = result[0]['label']
|
| 45 |
+
probability = result[0]['score']
|
| 46 |
+
st.write("Sentiment:", sentiment)
|
| 47 |
+
st.write("Probability:", probability)
|
| 48 |
+
|
| 49 |
+
if st.button("Infer Topic"):
|
| 50 |
+
lda_model = LdaModel.load("lda.model")
|
| 51 |
+
dictionary = Dictionary.load("dictionary.dict")
|
| 52 |
+
topic_names = {0: 'User Experience',
|
| 53 |
+
1: 'App Features',
|
| 54 |
+
2: 'Questions and Engagement',
|
| 55 |
+
3: 'Opinion on Banking App',
|
| 56 |
+
4: 'Mixed Feedback and Technical Issues',
|
| 57 |
+
}
|
| 58 |
+
|
| 59 |
+
inferred_topic, inferred_probability = get_highest_probability_topic(lda_model, dictionary, input_text, topic_names)
|
| 60 |
+
st.write("Inferred Topic:", inferred_topic)
|
| 61 |
+
st.write("Inference Probability:", inferred_probability)
|
| 62 |
+
|
| 63 |
+
if __name__ == "__main__":
|
| 64 |
+
main()
|
corpus_tfidf_pos.mm
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
corpus_tfidf_pos.mm.index
ADDED
|
Binary file (32.3 kB). View file
|
|
|
dictionary.dict
ADDED
|
Binary file (33 kB). View file
|
|
|
lda.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:858f495dd7f6f45c574bf2b300a75249cc74a6154a4c5e3efed24c741a68f9d9
|
| 3 |
+
size 8478
|
lda.model.expElogbeta.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e5e046c650d7dc819e07427f7ae23d682683eed9ec63de27ce26ee81b4362c04
|
| 3 |
+
size 22928
|
lda.model.id2word
ADDED
|
Binary file (32.7 kB). View file
|
|
|
lda.model.state
ADDED
|
Binary file (28 kB). View file
|
|
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit
|
| 2 |
+
tensorflow
|
| 3 |
+
pandas
|
| 4 |
+
gensim
|
| 5 |
+
transformers
|
| 6 |
+
nltk
|