Spaces:
Sleeping
Sleeping
import gradio as gr | |
import pandas as pd | |
import datasets | |
import seaborn as sns | |
import matplotlib.pyplot as plt | |
df = datasets.load_dataset("merve/supersoaker-failures") | |
df = df["train"].to_pandas() | |
df.dropna(axis=0, inplace=True) | |
def plot(df): | |
plt.scatter(df.measurement_13, df.measurement_15, c = df.loading,alpha=0.5) | |
plt.savefig("scatter.png") | |
df['failure'].value_counts().plot(kind='bar') | |
plt.savefig("bar.png") | |
sns.heatmap(df.select_dtypes(include="number").corr()) | |
plt.savefig("corr.png") | |
plots = ["corr.png","scatter.png", "bar.png"] | |
return plots | |
inputs = [gr.Dataframe(label="Supersoaker Production Data")] | |
outputs = [gr.Gallery(label="Profiling Dashboard", columns=(1,3))] | |
gr.Interface(plot, inputs=inputs, outputs=outputs, examples=[df.head(100)], title="Supersoaker Failures Analysis Dashboard").launch() |