import gradio as gr from transformers import AutoProcessor, AutoModelForVision2Seq from PIL import Image import torch model_id = "Qwen/Qwen-VL" processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) model = AutoModelForVision2Seq.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto", trust_remote_code=True) def answer_question(image, question): inputs = processor(images=image, text=question, return_tensors="pt").to("cuda") generated_ids = model.generate(**inputs, max_new_tokens=50) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] return generated_text iface = gr.Interface(fn=answer_question, inputs=["image", "text"], outputs="text", title="Qwen-VL Demo") iface.launch()