File size: 7,002 Bytes
3c3aa1b
 
 
 
 
 
 
 
 
 
 
2b314ce
3c3aa1b
2b314ce
3c3aa1b
 
 
 
 
 
2b314ce
3c3aa1b
2b314ce
3c3aa1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b314ce
 
 
 
 
 
 
 
 
 
 
 
 
 
3c3aa1b
2b314ce
 
 
3c3aa1b
 
 
 
 
2b314ce
3c3aa1b
 
 
 
 
 
 
 
 
 
 
2b314ce
3c3aa1b
 
 
 
2b314ce
3c3aa1b
 
 
 
 
 
 
 
 
2b314ce
3c3aa1b
 
 
2b314ce
3c3aa1b
 
 
 
 
 
 
 
 
 
 
 
2b314ce
 
 
 
3c3aa1b
 
 
 
 
2b314ce
3c3aa1b
 
2b314ce
 
3c3aa1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b314ce
3c3aa1b
 
 
 
 
 
 
 
 
2b314ce
3c3aa1b
 
 
 
2b314ce
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
from flask import Flask, request, jsonify, send_file
from PIL import Image
import torch
import torch.nn.functional as F
from torchvision import transforms
import os
import numpy as np
from datetime import datetime
import sqlite3
import torch.nn as nn
import cv2
import json

# Grad-CAM++ imports
from pytorch_grad_cam import GradCAMPlusPlus
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
from pytorch_grad_cam.utils.image import show_cam_on_image

app = Flask(__name__)

# βœ… Directory and database
OUTPUT_DIR = '/tmp/results'
os.makedirs(OUTPUT_DIR, exist_ok=True)

DB_PATH = os.path.join(OUTPUT_DIR, 'results.db')


def init_db():
    """Initialize SQLite database for storing results."""
    conn = sqlite3.connect(DB_PATH)
    cursor = conn.cursor()
    cursor.execute("""
        CREATE TABLE IF NOT EXISTS results (
            id INTEGER PRIMARY KEY AUTOINCREMENT,
            image_filename TEXT,
            prediction TEXT,
            confidence REAL,
            gradcam_filename TEXT,
            gradcam_gray_filename TEXT,
            timestamp TEXT
        )
    """)
    conn.commit()
    conn.close()


init_db()


# βœ… Import your EfficientNetB0_TransformerGLAM model
from efficientnet_transformer_glam import EfficientNetb0_TransformerGLAM  # Ensure this is in the path


# βœ… Instantiate the model
model = EfficientNetb0_TransformerGLAM(
    num_classes=3,
    embed_dim=512,
    num_heads=8,
    mlp_dim=512,
    dropout=0.5,
    window_size=7,
    reduction_ratio=8
)

# βœ… Load the trained checkpoint
model.load_state_dict(torch.load('densenet169_seed40_best.pt', map_location='cpu'))
model.eval()

# βœ… Class Names
CLASS_NAMES = ["Advanced", "Early", "Normal"]

# βœ… Transforms
transform = transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406],
                         std=[0.229, 0.224, 0.225]),
])

@app.route('/')
def home():
    """Check that the API is working."""
    return "Glaucoma Detection Flask API (EfficientNetB0_TransformerGLAM Model) is running!"

@app.route("/test_file")
def test_file():
    """Check if the .pt model file is present and readable."""
    filepath = "densenet169_seed40_best.pt"
    if os.path.exists(filepath):
        return f"βœ… Model file found at: {filepath}"
    else:
        return "❌ Model file NOT found."

@app.route('/predict', methods=['POST'])
def predict():
    """Perform prediction and save results (including Grad-CAM++) to the database."""
    if 'file' not in request.files:
        return jsonify({'error': 'No file uploaded.'}), 400

    uploaded_file = request.files['file']
    if uploaded_file.filename == '':
        return jsonify({'error': 'No file selected.'}), 400

    try:
        # βœ… Save the uploaded image
        timestamp = int(datetime.now().timestamp())
        uploaded_filename = f"uploaded_{timestamp}.png"
        uploaded_file_path = os.path.join(OUTPUT_DIR, uploaded_filename)
        uploaded_file.save(uploaded_file_path)

        # βœ… Perform prediction
        img = Image.open(uploaded_file_path).convert('RGB')
        input_tensor = transform(img).unsqueeze(0)

        # Model Inference
        with torch.no_grad():
            output = model(input_tensor)
        probabilities = F.softmax(output, dim=1).cpu().numpy()[0]
        class_index = np.argmax(probabilities)
        result = CLASS_NAMES[class_index]
        confidence = float(probabilities[class_index])

        # βœ… Grad-CAM++ setup
        target_layer = model.feature_extractor[-1]  # Final block of EfficientNet feature extractor
        cam_model = GradCAMPlusPlus(model=model, target_layers=[target_layer])

        cam_output = cam_model(input_tensor=input_tensor,
                               targets=[ClassifierOutputTarget(class_index)])[0]

        # βœ… Create RGB overlay
        original_img = np.asarray(img.resize((224, 224)), dtype=np.float32) / 255.0
        overlay = show_cam_on_image(original_img, cam_output, use_rgb=True)

        # βœ… Create grayscale version
        cam_normalized = np.uint8(255 * cam_output)

        # βœ… Save overlay
        gradcam_filename = f"gradcam_{timestamp}.png"
        gradcam_file_path = os.path.join(OUTPUT_DIR, gradcam_filename)
        cv2.imwrite(gradcam_file_path, cv2.cvtColor(overlay, cv2.COLOR_RGB2BGR))

        # βœ… Save grayscale
        gray_filename = f"gradcam_gray_{timestamp}.png"
        gray_file_path = os.path.join(OUTPUT_DIR, gray_filename)
        cv2.imwrite(gray_file_path, cam_normalized)

        # βœ… Save results to database
        conn = sqlite3.connect(DB_PATH)
        cursor = conn.cursor()
        cursor.execute("""
            INSERT INTO results (image_filename, prediction, confidence, gradcam_filename, gradcam_gray_filename, timestamp) 
            VALUES (?, ?, ?, ?, ?, ?)
        """, (uploaded_filename, result, confidence, gradcam_filename, gray_filename, datetime.now().isoformat()))
        conn.commit()
        conn.close()

        # βœ… Return results
        return jsonify({
            'prediction': result,
            'confidence': confidence,
            'normal_probability': float(probabilities[0]),
            'early_glaucoma_probability': float(probabilities[1]),
            'advanced_glaucoma_probability': float(probabilities[2]),
            'gradcam_image': gradcam_filename,
            'gradcam_gray_image': gray_filename,
            'image_filename': uploaded_filename
        })

    except Exception as e:
        return jsonify({'error': str(e)}), 500


@app.route('/results', methods=['GET'])
def results():
    """List all results from the SQLite database."""
    conn = sqlite3.connect(DB_PATH)
    cursor = conn.cursor()
    cursor.execute("SELECT * FROM results ORDER BY timestamp DESC")
    results_data = cursor.fetchall()
    conn.close()

    results_list = []
    for record in results_data:
        results_list.append({
            'id': record[0],
            'image_filename': record[1],
            'prediction': record[2],
            'confidence': record[3],
            'gradcam_filename': record[4],
            'gradcam_gray_filename': record[5],
            'timestamp': record[6]
        })

    return jsonify(results_list)


@app.route('/gradcam/<filename>')
def get_gradcam(filename):
    """Serve the Grad-CAM overlay image."""
    filepath = os.path.join(OUTPUT_DIR, filename)
    if os.path.exists(filepath):
        return send_file(filepath, mimetype='image/png')
    else:
        return jsonify({'error': 'File not found.'}), 404


@app.route('/image/<filename>')
def get_image(filename):
    """Serve the original uploaded image."""
    filepath = os.path.join(OUTPUT_DIR, filename)
    if os.path.exists(filepath):
        return send_file(filepath, mimetype='image/png')
    else:
        return jsonify({'error': 'File not found.'}), 404


if __name__ == '__main__':
    app.run(host='0.0.0.0', port=7860)