File size: 7,002 Bytes
3c3aa1b 2b314ce 3c3aa1b 2b314ce 3c3aa1b 2b314ce 3c3aa1b 2b314ce 3c3aa1b 2b314ce 3c3aa1b 2b314ce 3c3aa1b 2b314ce 3c3aa1b 2b314ce 3c3aa1b 2b314ce 3c3aa1b 2b314ce 3c3aa1b 2b314ce 3c3aa1b 2b314ce 3c3aa1b 2b314ce 3c3aa1b 2b314ce 3c3aa1b 2b314ce 3c3aa1b 2b314ce 3c3aa1b 2b314ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
from flask import Flask, request, jsonify, send_file
from PIL import Image
import torch
import torch.nn.functional as F
from torchvision import transforms
import os
import numpy as np
from datetime import datetime
import sqlite3
import torch.nn as nn
import cv2
import json
# Grad-CAM++ imports
from pytorch_grad_cam import GradCAMPlusPlus
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
from pytorch_grad_cam.utils.image import show_cam_on_image
app = Flask(__name__)
# β
Directory and database
OUTPUT_DIR = '/tmp/results'
os.makedirs(OUTPUT_DIR, exist_ok=True)
DB_PATH = os.path.join(OUTPUT_DIR, 'results.db')
def init_db():
"""Initialize SQLite database for storing results."""
conn = sqlite3.connect(DB_PATH)
cursor = conn.cursor()
cursor.execute("""
CREATE TABLE IF NOT EXISTS results (
id INTEGER PRIMARY KEY AUTOINCREMENT,
image_filename TEXT,
prediction TEXT,
confidence REAL,
gradcam_filename TEXT,
gradcam_gray_filename TEXT,
timestamp TEXT
)
""")
conn.commit()
conn.close()
init_db()
# β
Import your EfficientNetB0_TransformerGLAM model
from efficientnet_transformer_glam import EfficientNetb0_TransformerGLAM # Ensure this is in the path
# β
Instantiate the model
model = EfficientNetb0_TransformerGLAM(
num_classes=3,
embed_dim=512,
num_heads=8,
mlp_dim=512,
dropout=0.5,
window_size=7,
reduction_ratio=8
)
# β
Load the trained checkpoint
model.load_state_dict(torch.load('densenet169_seed40_best.pt', map_location='cpu'))
model.eval()
# β
Class Names
CLASS_NAMES = ["Advanced", "Early", "Normal"]
# β
Transforms
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
@app.route('/')
def home():
"""Check that the API is working."""
return "Glaucoma Detection Flask API (EfficientNetB0_TransformerGLAM Model) is running!"
@app.route("/test_file")
def test_file():
"""Check if the .pt model file is present and readable."""
filepath = "densenet169_seed40_best.pt"
if os.path.exists(filepath):
return f"β
Model file found at: {filepath}"
else:
return "β Model file NOT found."
@app.route('/predict', methods=['POST'])
def predict():
"""Perform prediction and save results (including Grad-CAM++) to the database."""
if 'file' not in request.files:
return jsonify({'error': 'No file uploaded.'}), 400
uploaded_file = request.files['file']
if uploaded_file.filename == '':
return jsonify({'error': 'No file selected.'}), 400
try:
# β
Save the uploaded image
timestamp = int(datetime.now().timestamp())
uploaded_filename = f"uploaded_{timestamp}.png"
uploaded_file_path = os.path.join(OUTPUT_DIR, uploaded_filename)
uploaded_file.save(uploaded_file_path)
# β
Perform prediction
img = Image.open(uploaded_file_path).convert('RGB')
input_tensor = transform(img).unsqueeze(0)
# Model Inference
with torch.no_grad():
output = model(input_tensor)
probabilities = F.softmax(output, dim=1).cpu().numpy()[0]
class_index = np.argmax(probabilities)
result = CLASS_NAMES[class_index]
confidence = float(probabilities[class_index])
# β
Grad-CAM++ setup
target_layer = model.feature_extractor[-1] # Final block of EfficientNet feature extractor
cam_model = GradCAMPlusPlus(model=model, target_layers=[target_layer])
cam_output = cam_model(input_tensor=input_tensor,
targets=[ClassifierOutputTarget(class_index)])[0]
# β
Create RGB overlay
original_img = np.asarray(img.resize((224, 224)), dtype=np.float32) / 255.0
overlay = show_cam_on_image(original_img, cam_output, use_rgb=True)
# β
Create grayscale version
cam_normalized = np.uint8(255 * cam_output)
# β
Save overlay
gradcam_filename = f"gradcam_{timestamp}.png"
gradcam_file_path = os.path.join(OUTPUT_DIR, gradcam_filename)
cv2.imwrite(gradcam_file_path, cv2.cvtColor(overlay, cv2.COLOR_RGB2BGR))
# β
Save grayscale
gray_filename = f"gradcam_gray_{timestamp}.png"
gray_file_path = os.path.join(OUTPUT_DIR, gray_filename)
cv2.imwrite(gray_file_path, cam_normalized)
# β
Save results to database
conn = sqlite3.connect(DB_PATH)
cursor = conn.cursor()
cursor.execute("""
INSERT INTO results (image_filename, prediction, confidence, gradcam_filename, gradcam_gray_filename, timestamp)
VALUES (?, ?, ?, ?, ?, ?)
""", (uploaded_filename, result, confidence, gradcam_filename, gray_filename, datetime.now().isoformat()))
conn.commit()
conn.close()
# β
Return results
return jsonify({
'prediction': result,
'confidence': confidence,
'normal_probability': float(probabilities[0]),
'early_glaucoma_probability': float(probabilities[1]),
'advanced_glaucoma_probability': float(probabilities[2]),
'gradcam_image': gradcam_filename,
'gradcam_gray_image': gray_filename,
'image_filename': uploaded_filename
})
except Exception as e:
return jsonify({'error': str(e)}), 500
@app.route('/results', methods=['GET'])
def results():
"""List all results from the SQLite database."""
conn = sqlite3.connect(DB_PATH)
cursor = conn.cursor()
cursor.execute("SELECT * FROM results ORDER BY timestamp DESC")
results_data = cursor.fetchall()
conn.close()
results_list = []
for record in results_data:
results_list.append({
'id': record[0],
'image_filename': record[1],
'prediction': record[2],
'confidence': record[3],
'gradcam_filename': record[4],
'gradcam_gray_filename': record[5],
'timestamp': record[6]
})
return jsonify(results_list)
@app.route('/gradcam/<filename>')
def get_gradcam(filename):
"""Serve the Grad-CAM overlay image."""
filepath = os.path.join(OUTPUT_DIR, filename)
if os.path.exists(filepath):
return send_file(filepath, mimetype='image/png')
else:
return jsonify({'error': 'File not found.'}), 404
@app.route('/image/<filename>')
def get_image(filename):
"""Serve the original uploaded image."""
filepath = os.path.join(OUTPUT_DIR, filename)
if os.path.exists(filepath):
return send_file(filepath, mimetype='image/png')
else:
return jsonify({'error': 'File not found.'}), 404
if __name__ == '__main__':
app.run(host='0.0.0.0', port=7860)
|