Update efficientnet_transformer_glam.py
Browse files- efficientnet_transformer_glam.py +201 -201
efficientnet_transformer_glam.py
CHANGED
@@ -1,201 +1,201 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import torch.nn.functional as F
|
4 |
-
import torchvision.models as models
|
5 |
-
|
6 |
-
|
7 |
-
# -------------------------------
|
8 |
-
# 1. SWIN WINDOW UTILS
|
9 |
-
# -------------------------------
|
10 |
-
def window_partition(x, window_size):
|
11 |
-
"""Partitions input tensor into windows of shape (B * num_windows, window_size*window_size, C)."""
|
12 |
-
B, H, W, C = x.shape
|
13 |
-
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
14 |
-
x = x.permute(0, 1, 3, 2, 4, 5).contiguous()
|
15 |
-
windows = x.view(-1, window_size * window_size, C)
|
16 |
-
return windows
|
17 |
-
|
18 |
-
def window_reverse(windows, window_size, H, W):
|
19 |
-
"""Reverses the window partition operation."""
|
20 |
-
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
21 |
-
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
|
22 |
-
x = x.permute(0, 1, 3, 2, 4, 5).contiguous()
|
23 |
-
x = x.view(B, H, W, -1)
|
24 |
-
return x
|
25 |
-
|
26 |
-
|
27 |
-
# -------------------------------
|
28 |
-
# 2. SWIN WINDOW ATTENTION
|
29 |
-
# -------------------------------
|
30 |
-
class SwinWindowAttention(nn.Module):
|
31 |
-
"""Swin-style window attention block."""
|
32 |
-
def __init__(self, embed_dim, window_size, num_heads, dropout=0.0):
|
33 |
-
super(SwinWindowAttention, self).__init__()
|
34 |
-
self.embed_dim = embed_dim
|
35 |
-
self.window_size = window_size
|
36 |
-
self.num_heads = num_heads
|
37 |
-
self.mha = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropout, batch_first=True)
|
38 |
-
self.dropout = nn.Dropout(dropout)
|
39 |
-
|
40 |
-
def forward(self, x):
|
41 |
-
"""Perform multi-head self-attn within windows."""
|
42 |
-
B, C, H, W = x.shape
|
43 |
-
x = x.permute(0, 2, 3, 1).contiguous()
|
44 |
-
|
45 |
-
pad_h = (self.window_size - H % self.window_size) % self.window_size
|
46 |
-
pad_w = (self.window_size - W % self.window_size) % self.window_size
|
47 |
-
if pad_h or pad_w:
|
48 |
-
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
|
49 |
-
Hp, Wp = x.shape[1], x.shape[2]
|
50 |
-
|
51 |
-
windows = window_partition(x, self.window_size) # (B*n_wins, win_size^2, C)
|
52 |
-
|
53 |
-
attn_windows, _ = self.mha(windows, windows, windows)
|
54 |
-
attn_windows = self.dropout(attn_windows)
|
55 |
-
|
56 |
-
x = window_reverse(attn_windows, self.window_size, Hp, Wp)
|
57 |
-
|
58 |
-
if pad_h or pad_w:
|
59 |
-
x = x[:, :H, :W, :].contiguous()
|
60 |
-
|
61 |
-
return x.permute(0, 3, 1, 2).contiguous()
|
62 |
-
|
63 |
-
|
64 |
-
# -------------------------------
|
65 |
-
# 3. GLAM
|
66 |
-
# -------------------------------
|
67 |
-
class GLAM(nn.Module):
|
68 |
-
"""Global-Local Attention Module (GLAM)."""
|
69 |
-
def __init__(self, in_channels, reduction_ratio=8):
|
70 |
-
super(GLAM, self).__init__()
|
71 |
-
|
72 |
-
# Local Channel Attention
|
73 |
-
self.local_channel_conv = nn.Conv2d(in_channels, in_channels // reduction_ratio, kernel_size=1)
|
74 |
-
self.local_channel_act = nn.Sigmoid()
|
75 |
-
self.local_channel_expand = nn.Conv2d(in_channels // reduction_ratio, in_channels, kernel_size=1)
|
76 |
-
|
77 |
-
# Local Spatial Attention
|
78 |
-
self.local_spatial_conv3 = nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=3, dilation=3)
|
79 |
-
self.local_spatial_conv5 = nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=5, dilation=5)
|
80 |
-
self.local_spatial_merge = nn.Conv2d(in_channels * 3, in_channels, kernel_size=1)
|
81 |
-
self.local_spatial_act = nn.Sigmoid()
|
82 |
-
|
83 |
-
# Global Channel Attention
|
84 |
-
self.global_avg_pool = nn.AdaptiveAvgPool2d(1)
|
85 |
-
self.global_channel_fc1 = nn.Linear(in_channels, in_channels // reduction_ratio)
|
86 |
-
self.global_channel_fc2 = nn.Linear(in_channels // reduction_ratio, in_channels)
|
87 |
-
self.global_channel_act = nn.Sigmoid()
|
88 |
-
|
89 |
-
# Global Spatial Attention
|
90 |
-
self.global_spatial_conv = nn.Conv2d(in_channels, 1, kernel_size=1)
|
91 |
-
self.global_spatial_softmax = nn.Softmax(dim=-1)
|
92 |
-
|
93 |
-
# Weights
|
94 |
-
self.local_attention_weight = nn.Parameter(torch.tensor(1.0))
|
95 |
-
self.global_attention_weight = nn.Parameter(torch.tensor(1.0))
|
96 |
-
|
97 |
-
def forward(self, x):
|
98 |
-
# Local Channel Attention
|
99 |
-
lca = self.local_channel_conv(x)
|
100 |
-
lca = self.local_channel_act(lca)
|
101 |
-
lca = self.local_channel_expand(lca)
|
102 |
-
lca_out = lca * x
|
103 |
-
|
104 |
-
# Local Spatial Attention
|
105 |
-
lsa3 = self.local_spatial_conv3(x)
|
106 |
-
lsa5 = self.local_spatial_conv5(x)
|
107 |
-
lsa_cat = torch.cat([x, lsa3, lsa5], dim=1)
|
108 |
-
lsa = self.local_spatial_merge(lsa_cat)
|
109 |
-
lsa = self.local_spatial_act(lsa)
|
110 |
-
lsa_out = lsa * lca_out
|
111 |
-
lsa_out = lsa_out + lca_out
|
112 |
-
|
113 |
-
# Global Channel Attention
|
114 |
-
B, C, H, W = x.size()
|
115 |
-
gca = self.global_avg_pool(x).view(B, C)
|
116 |
-
gca = F.relu(self.global_channel_fc1(gca), inplace=True)
|
117 |
-
gca = self.global_channel_fc2(gca)
|
118 |
-
gca = self.global_channel_act(gca)
|
119 |
-
gca = gca.view(B, C, 1, 1)
|
120 |
-
gca_out = gca * x
|
121 |
-
|
122 |
-
# Global Spatial Attention
|
123 |
-
gsa = self.global_spatial_conv(x) # [B, 1, H, W]
|
124 |
-
gsa = gsa.view(B, -1) # [B, H*W]
|
125 |
-
gsa = self.global_spatial_softmax(gsa)
|
126 |
-
gsa = gsa.view(B, 1, H, W)
|
127 |
-
gsa_out = gsa * gca_out
|
128 |
-
gsa_out = gsa_out + gca_out
|
129 |
-
|
130 |
-
# Final Fusion
|
131 |
-
out = lsa_out * self.local_attention_weight + gsa_out * self.global_attention_weight + x
|
132 |
-
return out
|
133 |
-
|
134 |
-
|
135 |
-
# -------------------------------
|
136 |
-
# 4. EFFICIENTNETB0_TRANSFORMERGLAM
|
137 |
-
# -------------------------------
|
138 |
-
class EfficientNetb0_TransformerGLAM(nn.Module):
|
139 |
-
"""EfficientNet-B0 + Swin-style Transformer + GLAM + Self-Adaptive Gating."""
|
140 |
-
def __init__(self,
|
141 |
-
num_classes=3,
|
142 |
-
embed_dim=512,
|
143 |
-
num_heads=8,
|
144 |
-
mlp_dim=512,
|
145 |
-
dropout=0.5,
|
146 |
-
window_size=7,
|
147 |
-
reduction_ratio=8):
|
148 |
-
super(EfficientNetb0_TransformerGLAM, self).__init__()
|
149 |
-
|
150 |
-
# EfficientNet Backbone
|
151 |
-
efficientnet = models.efficientnet_b0(
|
152 |
-
self.feature_extractor = nn.Sequential(*list(efficientnet.features.children()))
|
153 |
-
self.conv1x1 = nn.Conv2d(1280, embed_dim, kernel_size=1)
|
154 |
-
|
155 |
-
# Transformer path
|
156 |
-
self.pre_attn_norm = nn.LayerNorm(embed_dim)
|
157 |
-
self.swin_attn = SwinWindowAttention(embed_dim, window_size, num_heads, dropout)
|
158 |
-
self.post_attn_norm = nn.LayerNorm(embed_dim)
|
159 |
-
|
160 |
-
# GLAM path
|
161 |
-
self.glam = GLAM(in_channels=embed_dim, reduction_ratio=reduction_ratio)
|
162 |
-
|
163 |
-
# Self-adaptive gating
|
164 |
-
self.gate_fc = nn.Linear(embed_dim, 1)
|
165 |
-
|
166 |
-
# Final classification
|
167 |
-
self.dropout = nn.Dropout(dropout)
|
168 |
-
self.fc = nn.Linear(embed_dim, num_classes)
|
169 |
-
|
170 |
-
def forward(self, x):
|
171 |
-
# Backbone
|
172 |
-
feats = self.feature_extractor(x) # [B, 1280, H', W']
|
173 |
-
feats = self.conv1x1(feats) # [B, embed_dim, H', W']
|
174 |
-
|
175 |
-
B, C, H, W = feats.shape
|
176 |
-
|
177 |
-
# Transformer path
|
178 |
-
x_perm = feats.permute(0, 2, 3, 1).contiguous()
|
179 |
-
x_norm = self.pre_attn_norm(x_perm) # LN
|
180 |
-
x_norm = x_norm.permute(0, 3, 1, 2).contiguous()
|
181 |
-
x_norm = self.dropout(x_norm)
|
182 |
-
|
183 |
-
T = self.swin_attn(x_norm)
|
184 |
-
|
185 |
-
T_perm = T.permute(0, 2, 3, 1).contiguous()
|
186 |
-
T_norm = self.post_attn_norm(T_perm) # LN
|
187 |
-
T_out = T_norm.permute(0, 3, 1, 2).contiguous()
|
188 |
-
|
189 |
-
# GLAM path
|
190 |
-
G_out = self.glam(feats)
|
191 |
-
|
192 |
-
# Gating
|
193 |
-
gap_feats = F.adaptive_avg_pool2d(feats, (1, 1)).view(B, C)
|
194 |
-
g = torch.sigmoid(self.gate_fc(gap_feats))
|
195 |
-
g = g.view(B, 1, 1, 1)
|
196 |
-
|
197 |
-
# Final Fusion
|
198 |
-
F_out = g * T_out + (1 - g) * G_out
|
199 |
-
pooled = F.adaptive_avg_pool2d(F_out, (1, 1)).view(B, -1)
|
200 |
-
|
201 |
-
return self.fc(pooled)
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import torchvision.models as models
|
5 |
+
|
6 |
+
|
7 |
+
# -------------------------------
|
8 |
+
# 1. SWIN WINDOW UTILS
|
9 |
+
# -------------------------------
|
10 |
+
def window_partition(x, window_size):
|
11 |
+
"""Partitions input tensor into windows of shape (B * num_windows, window_size*window_size, C)."""
|
12 |
+
B, H, W, C = x.shape
|
13 |
+
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
14 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous()
|
15 |
+
windows = x.view(-1, window_size * window_size, C)
|
16 |
+
return windows
|
17 |
+
|
18 |
+
def window_reverse(windows, window_size, H, W):
|
19 |
+
"""Reverses the window partition operation."""
|
20 |
+
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
21 |
+
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
|
22 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous()
|
23 |
+
x = x.view(B, H, W, -1)
|
24 |
+
return x
|
25 |
+
|
26 |
+
|
27 |
+
# -------------------------------
|
28 |
+
# 2. SWIN WINDOW ATTENTION
|
29 |
+
# -------------------------------
|
30 |
+
class SwinWindowAttention(nn.Module):
|
31 |
+
"""Swin-style window attention block."""
|
32 |
+
def __init__(self, embed_dim, window_size, num_heads, dropout=0.0):
|
33 |
+
super(SwinWindowAttention, self).__init__()
|
34 |
+
self.embed_dim = embed_dim
|
35 |
+
self.window_size = window_size
|
36 |
+
self.num_heads = num_heads
|
37 |
+
self.mha = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropout, batch_first=True)
|
38 |
+
self.dropout = nn.Dropout(dropout)
|
39 |
+
|
40 |
+
def forward(self, x):
|
41 |
+
"""Perform multi-head self-attn within windows."""
|
42 |
+
B, C, H, W = x.shape
|
43 |
+
x = x.permute(0, 2, 3, 1).contiguous()
|
44 |
+
|
45 |
+
pad_h = (self.window_size - H % self.window_size) % self.window_size
|
46 |
+
pad_w = (self.window_size - W % self.window_size) % self.window_size
|
47 |
+
if pad_h or pad_w:
|
48 |
+
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
|
49 |
+
Hp, Wp = x.shape[1], x.shape[2]
|
50 |
+
|
51 |
+
windows = window_partition(x, self.window_size) # (B*n_wins, win_size^2, C)
|
52 |
+
|
53 |
+
attn_windows, _ = self.mha(windows, windows, windows)
|
54 |
+
attn_windows = self.dropout(attn_windows)
|
55 |
+
|
56 |
+
x = window_reverse(attn_windows, self.window_size, Hp, Wp)
|
57 |
+
|
58 |
+
if pad_h or pad_w:
|
59 |
+
x = x[:, :H, :W, :].contiguous()
|
60 |
+
|
61 |
+
return x.permute(0, 3, 1, 2).contiguous()
|
62 |
+
|
63 |
+
|
64 |
+
# -------------------------------
|
65 |
+
# 3. GLAM
|
66 |
+
# -------------------------------
|
67 |
+
class GLAM(nn.Module):
|
68 |
+
"""Global-Local Attention Module (GLAM)."""
|
69 |
+
def __init__(self, in_channels, reduction_ratio=8):
|
70 |
+
super(GLAM, self).__init__()
|
71 |
+
|
72 |
+
# Local Channel Attention
|
73 |
+
self.local_channel_conv = nn.Conv2d(in_channels, in_channels // reduction_ratio, kernel_size=1)
|
74 |
+
self.local_channel_act = nn.Sigmoid()
|
75 |
+
self.local_channel_expand = nn.Conv2d(in_channels // reduction_ratio, in_channels, kernel_size=1)
|
76 |
+
|
77 |
+
# Local Spatial Attention
|
78 |
+
self.local_spatial_conv3 = nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=3, dilation=3)
|
79 |
+
self.local_spatial_conv5 = nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=5, dilation=5)
|
80 |
+
self.local_spatial_merge = nn.Conv2d(in_channels * 3, in_channels, kernel_size=1)
|
81 |
+
self.local_spatial_act = nn.Sigmoid()
|
82 |
+
|
83 |
+
# Global Channel Attention
|
84 |
+
self.global_avg_pool = nn.AdaptiveAvgPool2d(1)
|
85 |
+
self.global_channel_fc1 = nn.Linear(in_channels, in_channels // reduction_ratio)
|
86 |
+
self.global_channel_fc2 = nn.Linear(in_channels // reduction_ratio, in_channels)
|
87 |
+
self.global_channel_act = nn.Sigmoid()
|
88 |
+
|
89 |
+
# Global Spatial Attention
|
90 |
+
self.global_spatial_conv = nn.Conv2d(in_channels, 1, kernel_size=1)
|
91 |
+
self.global_spatial_softmax = nn.Softmax(dim=-1)
|
92 |
+
|
93 |
+
# Weights
|
94 |
+
self.local_attention_weight = nn.Parameter(torch.tensor(1.0))
|
95 |
+
self.global_attention_weight = nn.Parameter(torch.tensor(1.0))
|
96 |
+
|
97 |
+
def forward(self, x):
|
98 |
+
# Local Channel Attention
|
99 |
+
lca = self.local_channel_conv(x)
|
100 |
+
lca = self.local_channel_act(lca)
|
101 |
+
lca = self.local_channel_expand(lca)
|
102 |
+
lca_out = lca * x
|
103 |
+
|
104 |
+
# Local Spatial Attention
|
105 |
+
lsa3 = self.local_spatial_conv3(x)
|
106 |
+
lsa5 = self.local_spatial_conv5(x)
|
107 |
+
lsa_cat = torch.cat([x, lsa3, lsa5], dim=1)
|
108 |
+
lsa = self.local_spatial_merge(lsa_cat)
|
109 |
+
lsa = self.local_spatial_act(lsa)
|
110 |
+
lsa_out = lsa * lca_out
|
111 |
+
lsa_out = lsa_out + lca_out
|
112 |
+
|
113 |
+
# Global Channel Attention
|
114 |
+
B, C, H, W = x.size()
|
115 |
+
gca = self.global_avg_pool(x).view(B, C)
|
116 |
+
gca = F.relu(self.global_channel_fc1(gca), inplace=True)
|
117 |
+
gca = self.global_channel_fc2(gca)
|
118 |
+
gca = self.global_channel_act(gca)
|
119 |
+
gca = gca.view(B, C, 1, 1)
|
120 |
+
gca_out = gca * x
|
121 |
+
|
122 |
+
# Global Spatial Attention
|
123 |
+
gsa = self.global_spatial_conv(x) # [B, 1, H, W]
|
124 |
+
gsa = gsa.view(B, -1) # [B, H*W]
|
125 |
+
gsa = self.global_spatial_softmax(gsa)
|
126 |
+
gsa = gsa.view(B, 1, H, W)
|
127 |
+
gsa_out = gsa * gca_out
|
128 |
+
gsa_out = gsa_out + gca_out
|
129 |
+
|
130 |
+
# Final Fusion
|
131 |
+
out = lsa_out * self.local_attention_weight + gsa_out * self.global_attention_weight + x
|
132 |
+
return out
|
133 |
+
|
134 |
+
|
135 |
+
# -------------------------------
|
136 |
+
# 4. EFFICIENTNETB0_TRANSFORMERGLAM
|
137 |
+
# -------------------------------
|
138 |
+
class EfficientNetb0_TransformerGLAM(nn.Module):
|
139 |
+
"""EfficientNet-B0 + Swin-style Transformer + GLAM + Self-Adaptive Gating."""
|
140 |
+
def __init__(self,
|
141 |
+
num_classes=3,
|
142 |
+
embed_dim=512,
|
143 |
+
num_heads=8,
|
144 |
+
mlp_dim=512,
|
145 |
+
dropout=0.5,
|
146 |
+
window_size=7,
|
147 |
+
reduction_ratio=8):
|
148 |
+
super(EfficientNetb0_TransformerGLAM, self).__init__()
|
149 |
+
|
150 |
+
# EfficientNet Backbone
|
151 |
+
efficientnet = models.efficientnet_b0(weights=None))
|
152 |
+
self.feature_extractor = nn.Sequential(*list(efficientnet.features.children()))
|
153 |
+
self.conv1x1 = nn.Conv2d(1280, embed_dim, kernel_size=1)
|
154 |
+
|
155 |
+
# Transformer path
|
156 |
+
self.pre_attn_norm = nn.LayerNorm(embed_dim)
|
157 |
+
self.swin_attn = SwinWindowAttention(embed_dim, window_size, num_heads, dropout)
|
158 |
+
self.post_attn_norm = nn.LayerNorm(embed_dim)
|
159 |
+
|
160 |
+
# GLAM path
|
161 |
+
self.glam = GLAM(in_channels=embed_dim, reduction_ratio=reduction_ratio)
|
162 |
+
|
163 |
+
# Self-adaptive gating
|
164 |
+
self.gate_fc = nn.Linear(embed_dim, 1)
|
165 |
+
|
166 |
+
# Final classification
|
167 |
+
self.dropout = nn.Dropout(dropout)
|
168 |
+
self.fc = nn.Linear(embed_dim, num_classes)
|
169 |
+
|
170 |
+
def forward(self, x):
|
171 |
+
# Backbone
|
172 |
+
feats = self.feature_extractor(x) # [B, 1280, H', W']
|
173 |
+
feats = self.conv1x1(feats) # [B, embed_dim, H', W']
|
174 |
+
|
175 |
+
B, C, H, W = feats.shape
|
176 |
+
|
177 |
+
# Transformer path
|
178 |
+
x_perm = feats.permute(0, 2, 3, 1).contiguous()
|
179 |
+
x_norm = self.pre_attn_norm(x_perm) # LN
|
180 |
+
x_norm = x_norm.permute(0, 3, 1, 2).contiguous()
|
181 |
+
x_norm = self.dropout(x_norm)
|
182 |
+
|
183 |
+
T = self.swin_attn(x_norm)
|
184 |
+
|
185 |
+
T_perm = T.permute(0, 2, 3, 1).contiguous()
|
186 |
+
T_norm = self.post_attn_norm(T_perm) # LN
|
187 |
+
T_out = T_norm.permute(0, 3, 1, 2).contiguous()
|
188 |
+
|
189 |
+
# GLAM path
|
190 |
+
G_out = self.glam(feats)
|
191 |
+
|
192 |
+
# Gating
|
193 |
+
gap_feats = F.adaptive_avg_pool2d(feats, (1, 1)).view(B, C)
|
194 |
+
g = torch.sigmoid(self.gate_fc(gap_feats))
|
195 |
+
g = g.view(B, 1, 1, 1)
|
196 |
+
|
197 |
+
# Final Fusion
|
198 |
+
F_out = g * T_out + (1 - g) * G_out
|
199 |
+
pooled = F.adaptive_avg_pool2d(F_out, (1, 1)).view(B, -1)
|
200 |
+
|
201 |
+
return self.fc(pooled)
|