from flask import Flask, request, jsonify, send_file from PIL import Image import torch import torch.nn.functional as F from torchvision import transforms import os import numpy as np from datetime import datetime import sqlite3 import torch.nn as nn import cv2 import json # Grad-CAM++ imports from pytorch_grad_cam import GradCAMPlusPlus from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget from pytorch_grad_cam.utils.image import show_cam_on_image app = Flask(__name__) # ✅ Directory and database OUTPUT_DIR = '/tmp/results' os.makedirs(OUTPUT_DIR, exist_ok=True) DB_PATH = os.path.join(OUTPUT_DIR, 'results.db') def init_db(): """Initialize SQLite database for storing results.""" conn = sqlite3.connect(DB_PATH) cursor = conn.cursor() cursor.execute(""" CREATE TABLE IF NOT EXISTS results ( id INTEGER PRIMARY KEY AUTOINCREMENT, image_filename TEXT, prediction TEXT, confidence REAL, gradcam_filename TEXT, gradcam_gray_filename TEXT, timestamp TEXT ) """) conn.commit() conn.close() init_db() # ✅ Import your EfficientNetB0_TransformerGLAM model from efficientnet_transformer_glam import EfficientNetb0_TransformerGLAM # Ensure this is in the path # ✅ Instantiate the model model = EfficientNetb0_TransformerGLAM( num_classes=3, embed_dim=512, num_heads=8, mlp_dim=512, dropout=0.5, window_size=7, reduction_ratio=8 ) # ✅ Load the trained checkpoint model.load_state_dict(torch.load('efficientnet_glam_best.pt', map_location='cpu')) model.eval() # ✅ Class Names CLASS_NAMES = ["Advanced", "Early", "Normal"] # ✅ Transforms transform = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) @app.route('/') def home(): """Check that the API is working.""" return "Glaucoma Detection Flask API (EfficientNetB0_TransformerGLAM Model) is running!" @app.route("/test_file") def test_file(): """Check if the .pt model file is present and readable.""" filepath = "densenet169_seed40_best.pt" if os.path.exists(filepath): return f"✅ Model file found at: {filepath}" else: return "❌ Model file NOT found." @app.route('/predict', methods=['POST']) def predict(): """Perform prediction and save results (including Grad-CAM++) to the database.""" if 'file' not in request.files: return jsonify({'error': 'No file uploaded.'}), 400 uploaded_file = request.files['file'] if uploaded_file.filename == '': return jsonify({'error': 'No file selected.'}), 400 try: # ✅ Save the uploaded image timestamp = int(datetime.now().timestamp()) uploaded_filename = f"uploaded_{timestamp}.png" uploaded_file_path = os.path.join(OUTPUT_DIR, uploaded_filename) uploaded_file.save(uploaded_file_path) # ✅ Perform prediction img = Image.open(uploaded_file_path).convert('RGB') input_tensor = transform(img).unsqueeze(0) # Model Inference with torch.no_grad(): output = model(input_tensor) probabilities = F.softmax(output, dim=1).cpu().numpy()[0] class_index = np.argmax(probabilities) result = CLASS_NAMES[class_index] confidence = float(probabilities[class_index]) # ✅ Grad-CAM++ setup target_layer = model.fusion_block # Final block of EfficientNet feature extractor cam_model = GradCAMPlusPlus(model=model, target_layers=[target_layer]) cam_output = cam_model(input_tensor=input_tensor, targets=[ClassifierOutputTarget(class_index)])[0] # ✅ Create RGB overlay original_img = np.asarray(img.resize((224, 224)), dtype=np.float32) / 255.0 overlay = show_cam_on_image(original_img, cam_output, use_rgb=True) # ✅ Create grayscale version cam_normalized = np.uint8(255 * cam_output) # ✅ Save overlay gradcam_filename = f"gradcam_{timestamp}.png" gradcam_file_path = os.path.join(OUTPUT_DIR, gradcam_filename) cv2.imwrite(gradcam_file_path, cv2.cvtColor(overlay, cv2.COLOR_RGB2BGR)) # ✅ Save grayscale gray_filename = f"gradcam_gray_{timestamp}.png" gray_file_path = os.path.join(OUTPUT_DIR, gray_filename) cv2.imwrite(gray_file_path, cam_normalized) # ✅ Save results to database conn = sqlite3.connect(DB_PATH) cursor = conn.cursor() cursor.execute(""" INSERT INTO results (image_filename, prediction, confidence, gradcam_filename, gradcam_gray_filename, timestamp) VALUES (?, ?, ?, ?, ?, ?) """, (uploaded_filename, result, confidence, gradcam_filename, gray_filename, datetime.now().isoformat())) conn.commit() conn.close() # ✅ Return results return jsonify({ 'prediction': result, 'confidence': confidence, 'normal_probability': float(probabilities[0]), 'early_glaucoma_probability': float(probabilities[1]), 'advanced_glaucoma_probability': float(probabilities[2]), 'gradcam_image': gradcam_filename, 'gradcam_gray_image': gray_filename, 'image_filename': uploaded_filename }) except Exception as e: return jsonify({'error': str(e)}), 500 @app.route('/results', methods=['GET']) def results(): """List all results from the SQLite database.""" conn = sqlite3.connect(DB_PATH) cursor = conn.cursor() cursor.execute("SELECT * FROM results ORDER BY timestamp DESC") results_data = cursor.fetchall() conn.close() results_list = [] for record in results_data: results_list.append({ 'id': record[0], 'image_filename': record[1], 'prediction': record[2], 'confidence': record[3], 'gradcam_filename': record[4], 'gradcam_gray_filename': record[5], 'timestamp': record[6] }) return jsonify(results_list) @app.route('/gradcam/') def get_gradcam(filename): """Serve the Grad-CAM overlay image.""" filepath = os.path.join(OUTPUT_DIR, filename) if os.path.exists(filepath): return send_file(filepath, mimetype='image/png') else: return jsonify({'error': 'File not found.'}), 404 @app.route('/image/') def get_image(filename): """Serve the original uploaded image.""" filepath = os.path.join(OUTPUT_DIR, filename) if os.path.exists(filepath): return send_file(filepath, mimetype='image/png') else: return jsonify({'error': 'File not found.'}), 404 if __name__ == '__main__': app.run(host='0.0.0.0', port=7860)