import torch import torch.nn as nn import torch.nn.functional as F from transformers import PreTrainedModel, PretrainedConfig from transformers import EfficientNetModel from typing import Optional, Union # -------------------------------------------------- # Import your GLAM, SwinWindowAttention blocks here # -------------------------------------------------- # from .glam_module import GLAM # from .swin_module import SwinWindowAttention class GLAMEfficientNetConfig(PretrainedConfig): """Hugging Face-style configuration for GLAM EfficientNet.""" model_type = "glam_efficientnet" def __init__(self, num_classes: int = 3, embed_dim: int = 512, num_heads: int = 8, window_size: int = 7, reduction_ratio: int = 8, dropout: float = 0.5, **kwargs): super().__init__(**kwargs) self.num_classes = num_classes self.embed_dim = embed_dim self.num_heads = num_heads self.window_size = window_size self.reduction_ratio = reduction_ratio self.dropout = dropout class GLAMEfficientNetForClassification(PreTrainedModel): """Hugging Face-style Model for EfficientNet + GLAM + Swin Architecture.""" config_class = GLAMEfficientNetConfig def __init__(self, config: GLAMEfficientNetConfig): super().__init__(config) # 1) EfficientNet Backbone self.features = EfficientNetModel.from_pretrained("google/efficientnet-b0").features self.conv1x1 = nn.Conv2d(1280, config.embed_dim, kernel_size=1) # 2) Swin Attention Block self.swin_attn = SwinWindowAttention( embed_dim=config.embed_dim, window_size=config.window_size, num_heads=config.num_heads, dropout=config.dropout ) self.pre_attn_norm = nn.LayerNorm(config.embed_dim) self.post_attn_norm = nn.LayerNorm(config.embed_dim) # 3) GLAM Block self.glam = GLAM(in_channels=config.embed_dim, reduction_ratio=config.reduction_ratio) # 4) Self-Adaptive Gating self.gate_fc = nn.Linear(config.embed_dim, 1) # Final classification self.dropout = nn.Dropout(config.dropout) self.classifier = nn.Linear(config.embed_dim, config.num_classes) def forward(self, pixel_values, labels=None, **kwargs): # 1) Extract EfficientNet Features feats = self.features(pixel_values).last_hidden_state feats = self.conv1x1(feats) B, C, H, W = feats.shape # 2) Transformer Branch x_perm = feats.permute(0, 2, 3, 1).contiguous() x_norm = self.pre_attn_norm(x_perm).permute(0, 3, 1, 2).contiguous() x_norm = self.dropout(x_norm) T_out = self.swin_attn(x_norm) T_out = self.post_attn_norm(T_out.permute(0, 2, 3, 1).contiguous()) T_out = T_out.permute(0, 3, 1, 2).contiguous() # 3) GLAM Branch G_out = self.glam(feats) # 4) Self-Adaptive Gating gap_feats = F.adaptive_avg_pool2d(feats, (1, 1)).view(B, C) g = torch.sigmoid(self.gate_fc(gap_feats)).view(B, 1, 1, 1) F_out = g * T_out + (1 - g) * G_out # 5) Final Pooling + Classifier pooled = F.adaptive_avg_pool2d(F_out, (1, 1)).view(B, -1) logits = self.classifier(self.dropout(pooled)) loss = None if labels is not None: loss = F.cross_entropy(logits, labels) return {"loss": loss, "logits": logits}