import torch import torch.nn as nn import torch.nn.functional as F from torchvision import models from typing import Optional, Union from glam_module import GLAM from swin_module import SwinWindowAttention from transformers import EfficientNetModel class GLAMEfficientNetConfig: """Hugging Face-style configuration for GLAM EfficientNet.""" def __init__(self, num_classes: int = 3, embed_dim: int = 512, num_heads: int = 8, window_size: int = 7, reduction_ratio: int = 8, dropout: float = 0.5, **kwargs): super().__init__(**kwargs) self.num_classes = num_classes self.embed_dim = embed_dim self.num_heads = num_heads self.window_size = window_size self.reduction_ratio = reduction_ratio self.dropout = dropout class GLAMEfficientNetForClassification(nn.Module): """EfficientNet (torchvision) + GLAM + Swin Architecture for Classification.""" def __init__(self, config: GLAMEfficientNetConfig, glam_module_cls, swin_module_cls): super().__init__() # ✅ 1) Torchvision EfficientNet Backbone efficientnet = models.efficientnet_b0(pretrained=False) # No Hugging Face! self.feature_extractor = EfficientNetModel.from_pretrained("google/efficientnet-b0") # ✅ 1x1 conv for channel adjustment self.conv1x1 = nn.Conv2d(1280, config.embed_dim, kernel_size=1) # ✅ 2) Swin Attention Block self.swin_attn = swin_module_cls( embed_dim=config.embed_dim, window_size=config.window_size, num_heads=config.num_heads, dropout=config.dropout ) self.pre_attn_norm = nn.LayerNorm(config.embed_dim) self.post_attn_norm = nn.LayerNorm(config.embed_dim) # ✅ 3) GLAM Block self.glam = glam_module_cls(in_channels=config.embed_dim, reduction_ratio=config.reduction_ratio) # ✅ 4) Self-Adaptive Gating self.gate_fc = nn.Linear(config.embed_dim, 1) # ✅ Final classification self.dropout = nn.Dropout(config.dropout) self.classifier = nn.Linear(config.embed_dim, config.num_classes) def forward(self, pixel_values, labels=None, **kwargs): """Perform forward pass.""" # ✅ 1) EfficientNet Backbone feats = self.features(pixel_values) # [B, 1280, H', W'] feats = self.conv1x1(feats) # [B, embed_dim, H', W'] B, C, H, W = feats.shape # ✅ 2) Transformer Branch x_perm = feats.permute(0, 2, 3, 1).contiguous() # [B, H', W', C] x_norm = self.pre_attn_norm(x_perm).permute(0, 3, 1, 2).contiguous() x_norm = self.dropout(x_norm) T_out = self.swin_attn(x_norm) # [B, C, H', W'] T_out = self.post_attn_norm(T_out.permute(0, 2, 3, 1).contiguous()) T_out = T_out.permute(0, 3, 1, 2).contiguous() # ✅ 3) GLAM Branch G_out = self.glam(feats) # ✅ 4) Self-Adaptive Gating gap_feats = F.adaptive_avg_pool2d(feats, (1, 1)).view(B, C) g = torch.sigmoid(self.gate_fc(gap_feats)).view(B, 1, 1, 1) F_out = g * T_out + (1 - g) * G_out # ✅ Final Pooling & Classifier pooled = F.adaptive_avg_pool2d(F_out, (1, 1)).view(B, -1) logits = self.classifier(self.dropout(pooled)) loss = None if labels is not None: loss = F.cross_entropy(logits, labels) return {"loss": loss, "logits": logits}